分析 (1)根據(jù)已知條件容易證明△BEA≌△AFC,然后利用對應(yīng)邊相等就可以證明題目的結(jié)論;
(2)根據(jù)(1)知道△BEA≌△AFC仍然成立,則BE=AF,AE=CF,就可以求出EF=BE-CF.
解答 (1)證明:∵BE⊥EA,CF⊥AF,
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,
∴∠CAF=∠EBA,
在△ABE和△CAF中,
$\left\{\begin{array}{l}{∠BEA=∠AFC=90°}\\{∠EBA=∠CAF}\\{AB=AC}\end{array}\right.$,
∴△BEA≌△AFC.
∴EA=FC,BE=AF.
∴EF=EA+AF=BE+CF.
(2)結(jié)論:EF=BE-CF.
理由是:∵BE⊥EA,CF⊥AF,
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,
∴∠CAF=∠ABE,
在△ABE和△ACF中,
$\left\{\begin{array}{l}{∠BEA=∠AFC=90°}\\{∠EBA=∠CAF}\\{AB=AC}\end{array}\right.$,
∴△BEA≌△AFC.
∴EA=FC,BE=AF.
∵EF=AF-AE,
∴EF=BE-CF.
故答案為:EF=BE-CF.
點評 本題主要考查了全等三角形的性質(zhì)與判定,利用它們解決問題,經(jīng)常用全等來證線段和的問題.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ±1 | B. | -1 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com