分析 (1)由解析式令x=0,y=-$\frac{4}{3}$x+8=8,即B(0,8),令y=0時,x=6,即A(6,0);
(2)直接根據(jù)勾股定理即可得出AB的長;
(3)由折疊的性質(zhì),可求得AB′與OB′的長,BM=B′M,然后設(shè)MO=x,由在Rt△OMB′中,OM2+OB′2=B′M2,求出M的坐標(biāo).
解答 解:(1)當(dāng)x=0時,y=-$\frac{4}{3}$x+8=8,即B(0,8),
當(dāng)y=0時,x=6,即A(6,0).
故答案為:(6,0),(0,8);
(2)∵A(6,0),B(0,8),
∴AB=$\sqrt{{6}^{2}+{8}^{2}}$=10;
(3)由折疊的性質(zhì),得:AB=AB′=10,
∴OB′=AB′-OA=10-6=4,
設(shè)MO=x,則MB=MB′=8-x,
在Rt△OMB′中,OM2+OB′2=B′M2,
即x2+42=(8-x)2,
解得:x=3,
∴M(0,3),
點(diǎn)評 本題考查的是一次函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),熟知一次函數(shù)圖象上各點(diǎn)的坐標(biāo)一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 整數(shù) | B. | 有理數(shù) | C. | 分?jǐn)?shù) | D. | 無理數(shù) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com