【題目】如圖,⊙O的半徑為2,弦BC=2
,點A是優(yōu)弧BC上一動點(不包括端點),△ABC的高BD、CE相交于點F,連結(jié)ED.下列四個結(jié)論:
①∠A始終為60°;
②當(dāng)∠ABC=45°時,AE=EF;
③當(dāng)△ABC為銳角三角形時,ED=
;
④線段ED的垂直平分線必平分弦BC.
其中正確的結(jié)論是_____.(把你認為正確結(jié)論的序號都填上)
![]()
【答案】①②③④
【解析】分析:①延長CO交⊙O于點G,如圖1.在Rt△BGC中,運用三角函數(shù)就可解決問題;②只需證到△BEF≌△CEA即可;③易證△AEC∽△ADB,則
,從而可證到△AED∽△ACB,則有
.由∠A=60°可得到
,進而可得到ED=
;④取BC中點H,連接EH、DH,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得EH=DH=
BC,所以線段ED的垂直平分線必平分弦BC.
詳解:①延長CO交⊙O于點G,如圖1.
![]()
則有∠BGC=∠BAC.
∵CG為⊙O的直徑,∴∠CBG=90°.
∴sin∠BGC=
.
∴∠BGC=60°.
∴∠BAC=60°.
故①正確.
②如圖2,
![]()
∵∠ABC=45°,CE⊥AB,即∠BEC=90°,
∴∠ECB=45°=∠EBC.
∴EB=EC.
∵CE⊥AB,BD⊥AC,
∴∠BEC=∠BDC=90°.
∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°.
∵∠EFB=∠DFC,∴∠EBF=∠DCF.
在△BEF和△CEA中,
,
∴△BEF≌△CEA.
∴AE=EF.
故②正確.
③如圖3,
∵∠AEC=∠ADB=90°,∠A=∠A,
∴△AEC∽△ADB.
∴
.
∵∠A=∠A,
∴△AED∽△ACB.
∴
.
∵cosA=
=cos60°=
,
∴
.
∴ED=
BC=
.
故③正確.
④取BC中點H,連接EH、DH,如圖3、圖4.
![]()
![]()
∵∠BEC=∠CDB=90°,點H為BC的中點,
∴EH=DH=
BC.
∴點H在線段DE的垂直平分線上,
即線段ED的垂直平分線平分弦BC.
故④正確.
故答案為:①②③④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織340名師生進行長途考察活動,帶有行李170件,計劃租用甲、乙兩種型號的汽車共10輛.經(jīng)了解,甲車每輛最多能載40人和16件行李,乙車每輛最多能載30人和20件行李.
(1)請你幫助學(xué)校設(shè)計所有可行的租車方案.
(2)如果甲車的租金為每輛2 000元,乙車的租金為每輛1 800元,問哪種可行方案使租車費用最?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(8,1),B(0,﹣3),反比例函數(shù)y=
(x>0)的圖象經(jīng)過點A,動直線x=t(0<t<8)與反比例函數(shù)的圖象交于點M,與直線AB交于點N.
(1)k的值是______;
(2)當(dāng)t=4時,求△BMN面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠D=∠C=90°,E是DC的中點,AE平分∠DAB,∠DEA=28°,則∠ABE的度數(shù)是__________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,C在D的右側(cè),BE平分∠ABC,DE平分∠ADC,BE、DE所在直線交于點E.∠ADC =68°.
(1)求∠EDC的度數(shù);
(2)若∠ABC =n°,求∠BED的度數(shù)(用含n的代數(shù)式表示);
(3)將線段BC沿DC方向平移, 使得點B在點A的右側(cè),其他條件不變,畫出圖形并判斷∠BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示),不改變,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩塊直角三角形紙板如圖①擺放,
,現(xiàn)將
繞
點逆時針轉(zhuǎn)動;
![]()
當(dāng)轉(zhuǎn)動至圖②位置時,若
,且
平分
平分
,則
_;
![]()
當(dāng)轉(zhuǎn)動至圖③位置時,
平分
平分
,求
的度數(shù);
![]()
當(dāng)轉(zhuǎn)動至圖④位置時,
平分
平分
,請直接寫出
的度數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】依據(jù)國家實行的《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》,對懷柔區(qū)初一學(xué)生身高進行抽樣調(diào)查,以便總結(jié)懷柔區(qū)初一學(xué)生現(xiàn)存的身高問題,分析其影響因素,為學(xué)生的健康發(fā)展及學(xué)校體育教育改革提出合理項建議.已知懷柔區(qū)初一學(xué)生有男生840人,女生800人,他們的身高在150≤x<175范圍內(nèi),隨機抽取初一學(xué)生進行抽樣調(diào)查.抽取的樣本中,男生比女生多2人,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:
![]()
根據(jù)統(tǒng)計圖表提供的信息,下列說法中
①抽取男生的樣本中,身高在155≤x<165之間的學(xué)生有18人;
②初一學(xué)生中女生的身高的中位數(shù)在B組;
③抽取的樣本中,抽取女生的樣本容量是38;
④初一學(xué)生身高在160≤x<170之間的學(xué)生約有800人.
其中合理的是
A. ①② B. ①④ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線
相交于A,B兩點,A點坐標(biāo)為(-3,2),B點坐標(biāo)為(n,-3).
(1)求一次函數(shù)和反比例函數(shù)表達式;
(2)如果點P是x軸上一點,且△ABP的面積是5,直接寫出點P的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接第二屆“環(huán)泉州灣國際自行車賽”的到來,泉州臺商投資區(qū)需要制作宣傳單.有兩個印刷廠前來聯(lián)系制作業(yè)務(wù),甲廠的優(yōu)惠條件是:按每份定價1.5元的八折收費,另收900元制版費;乙廠的優(yōu)惠條件是:每份定價1.5元的價格不變,而制版費900元則六折優(yōu)惠.且甲乙兩廠都規(guī)定:一次印刷數(shù)量至少是500份.
(1)若印刷數(shù)量為
份(
,且
是整數(shù)),請你分別寫出兩個印刷廠收費的代數(shù)式;
(2)如果比賽宣傳單需要印刷1100份,應(yīng)選擇哪個廠家?為什么?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com