分析 (1)結(jié)論四邊形EBGD是菱形.只要證明BE=ED=DG=GB即可.
(2)作DH⊥BC于H,由四邊形EBGD為菱形ED=DG=2,求出GH,CH即可解決問題.
解答 解:(1)四邊形EBGD是菱形.
理由:∵EG垂直平分BD,
∴EB=ED,GB=GD,
∴∠EBD=∠EDB,
∵∠EBD=∠DBC,
∴∠EDF=∠GBF,
在△EFD和△GFB中,![]()
$\left\{\begin{array}{l}{∠EDF=∠GBF}\\{∠EFD=∠GFB}\\{DF=BF}\end{array}\right.$,
∴△EFD≌△GFB,
∴ED=BG,
∴BE=ED=DG=GB,
∴四邊形EBGD是菱形.
(2)作DH⊥BC于H,
∵四邊形EBGD為菱形ED=DG=2,
∴∠ABC=30°,∠DGH=30°,
∴DH=1,GH=$\sqrt{3}$,
∵∠C=45°,
∴DH=CH=1,
∴CG=GH+CH=1+$\sqrt{3}$.
點(diǎn)評(píng) 本題考查平行四邊形的判定和性質(zhì)、菱形的判定和性質(zhì)、角平分線的性質(zhì)、垂直平分線的性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
| 分組 | 31-35kg | 36-40kg | 41-45kg | 46-50kg | 51-55kg |
| 人數(shù) | 8 | 23 | 15 | 9 | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}x>-2\\ x≤3\end{array}\right.$ | B. | $\left\{\begin{array}{l}x≥-2\\ x<3\end{array}\right.$ | C. | $\left\{\begin{array}{l}x<-2\\ x≥3\end{array}\right.$ | D. | $\left\{\begin{array}{l}x≤-2\\ x>3\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com