如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.
![]()
(1)30°;(2)4.
【解析】
試題分析:(1)根據(jù)平行線的性質(zhì)可得∠EDC=∠B=60,根據(jù)三角形內(nèi)角和定理即可求解;
(2)易證△EDC是等邊三角形,再根據(jù)含30度角的直角三角形的性質(zhì)即可求解.
試題解析:【解析】
(1)∵△ABC是等邊三角形,∴∠B=60°.
∵DE∥AB,∴∠EDC=∠B=60°.
∵EF⊥DE,∴∠DEF=90°.
∴∠F=90°﹣∠EDC=30°.
(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等邊三角形.
∴ED=DC=2.
∵∠DEF=90°,∠F=30°,∴DF=2DE=4.
考點:1.等邊三角形的判定與性質(zhì);2.平行的性質(zhì);3.含30度角的直角三角形的性質(zhì).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(湖北宜昌卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.
(1)求∠CAD的度數(shù);
(2)延長AC至E,使CE=AC,求證:DA=DE.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江舟山卷)數(shù)學(xué)(解析版) 題型:選擇題
-3的絕對值為( )
(A)-3 (B)3 (C)
(D)![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江湖州卷)數(shù)學(xué)(解析版) 題型:選擇題
如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑圓弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結(jié)論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=
AB中,一定正確的是( )
![]()
A.①②③ B.①②④ C.①③④ D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江湖州卷)數(shù)學(xué)(解析版) 題型:選擇題
﹣3的倒數(shù)是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江溫州卷)數(shù)學(xué)(解析版) 題型:填空題
如圖,在矩形ABCD中,AD=8,E是邊AB上一點,且AE=
AB,⊙O經(jīng)過點E,與邊CD所在直線相切于點G(∠GEB為銳角),與邊AB所在直線相交于另一點F,且EG:EF=
.當(dāng)邊AD或BC所在的直線與⊙O相切時,AB的長是 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江溫州卷)數(shù)學(xué)(解析版) 題型:選擇題
20位同學(xué)在植樹節(jié)這天共種了52棵樹苗,其中男生每人種3棵,女生每人種2棵,設(shè)男生有x人,女生有y人,根據(jù)題意,列方程組正確的是( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江杭州卷)數(shù)學(xué)(解析版) 題型:填空題
已知杭州市某天六個整點時的氣溫繪制成的統(tǒng)計圖,則這六個整點時氣溫的中位數(shù)是 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江西南昌卷)數(shù)學(xué)(解析版) 題型:解答題
如圖1,邊長為4的正方形ABCD中,點E在AB邊上(不與點A,B重合),點F在BC邊上(不與點B,C重合).
第一次操作:將線段EF繞點F順時針旋轉(zhuǎn),當(dāng)點E落在正方形上時,記為點G;
第二次操作:將線段FG繞點G順時針旋轉(zhuǎn),當(dāng)點F落在正方形上時,記為點H;
依次操作下去…
(1)圖2中的△EFD是經(jīng)過兩次操作后得到的,其形狀為 ,求此時線段EF的長;
(2)若經(jīng)過三次操作可得到四邊形EFGH.
①請判斷四邊形EFGH的形狀為 ,此時AE與BF的數(shù)量關(guān)系是 ;
②以①中的結(jié)論為前提,設(shè)AE的長為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍;
(3)若經(jīng)過多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是多少?它可能是正多邊形嗎?如果是,請直接寫出其邊長;如果不是,請說明理由.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com