【題目】如圖,四邊形ABCD是平行四邊形,點A(1,0),B(4,1),C(4,3),反比例函數(shù)y=
的圖象經過點D,點P是一次函數(shù)y=mx+3﹣4m(m≠0)的圖象與該反比例函數(shù)圖象的一個公共點;
(1)求反比例函數(shù)的解析式;
(2)通過計算說明一次函數(shù)y=mx+3﹣4m的圖象一定過點C;
(3)對于一次函數(shù)y=mx+3﹣4m(m≠0),當y隨x的增大而增大時,確定點P的橫坐標的取值范圍,(不必寫過程)
![]()
【答案】(1)y=
;(2)C(4,3);(3)見解析.
【解析】試題分析:(1)由B(4,1),C(4,3)得到BC⊥x軸,BC=2,根據平行四邊形的性質得AD=BC=2,而A點坐標為(1,0),可得到點D的坐標為(1,2),然后把D(1,2)代入y=
即可得到k=2,從而可確定反比例函數(shù)的解析式;
(2)把x=4代入y=mx+3﹣4m(m≠0)得到y(tǒng)=3,即可說明一次函數(shù)y=mx+3﹣4m(m≠0)的圖象一定過點C;
(3)設點P的橫坐標為x,由于一次函數(shù)y=mx+3﹣4m(m≠0)過C點,并且y隨x的增大而增大時,則P點的縱坐標要小于3,橫坐標要小于3,當縱坐標小于3時,由y=
得到x>
,于是得到x的取值范圍.
試題解析:解:(1)∵B(4,1),C(4,3),
∴BC∥y軸,BC=2,
又∵四邊形ABCD是平行四邊形,
∴AD=BC=2,AD∥y軸,而A(1,0),
∴D(1,2),
∴由反比例函數(shù)y=
的圖象經過點D,可得k=1×2=2,
∴反比例函數(shù)的解析式為y=
;
(2)∵在一次函數(shù)y=mx+3﹣4m中,當x=4時,y=4m+3﹣4m=3,
∴一次函數(shù)y=mx+3﹣4m的圖象一定過點C(4,3);
(3)點P的橫坐標的取值范圍:
<x<4.
如圖所示,過C(4,3)作y軸的垂線,交雙曲線于E,作x軸的垂線,交雙曲線于F,
當y=3時,3=
,即x=
,
∴點E的橫坐標為
;
由點C的橫坐標為4,可得F的橫坐標為4;
∵一次函數(shù)y=mx+3﹣4m的圖象一定過點C(4,3),且y隨x的增大而增大,
∴直線y=mx+3﹣4m與雙曲線的交點P落在EF之間的雙曲線上,
∴點P的橫坐標的取值范圍是
<x<4.
![]()
科目:初中數(shù)學 來源: 題型:
【題目】某中學對全校1200名學生進行“校園安全知識”的教育活動,從1200名學生中隨機抽取部分學生進行測試,成績評定按從高分到低分排列分為
,
,
,
四個等級,繪制了圖①、圖②兩幅不完整的統(tǒng)計圖.請結合圖中所給信息解答下列問題:
![]()
(1)求本次被抽查的學生共有多少名?
(2)將條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整;
(3)求扇形統(tǒng)計圖中“
”所在的扇形圓心角的度數(shù);
(4)估計全校“
”等級的學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D、E是BC邊上的點,BD:DE:EC=3:2:1,M在AC邊上,CM:MA=1:2,BM交AD,AE于H,G,則BH:HG:GM等于( 。
![]()
A. 3:2:1 B. 5:3:1 C. 25:12:5 D. 51:24:10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著人民生活水平的提高,汽車進入家庭的越來越多.我市某小區(qū)在2007年底擁有家庭轎車64輛,到了2009年底,家庭轎車數(shù)為100輛.
(1)若平均每年轎車數(shù)的增長率相同,求這個增長率.
(2)為了緩解停車矛盾,多增加一些車位,該小區(qū)決定投資15萬元,再造一些停車位.據測算,建造一個室內停車位,需5000元;建造一個室外停車位,需1000元.按實際情況考慮,計劃室外停車位數(shù)不少于室內車位的2倍,又不能超過室內車位的2.5倍.問,該小區(qū)有哪幾種建造方案?應選擇哪種方案最合理?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形AOBC中,OB=4,OA=3,分別以OB,OA所在直線為x軸、y軸建立平面直角坐標系,F(xiàn)是BC邊上的點,過F點的反比例函數(shù)y=
(k>0)的圖象與AC邊交于點E.若將△CEF沿EF翻折后,點C恰好落在OB上的點D處,則點F的坐標為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標平面內,直線y=
x+2分別與x軸、y軸交于點A、C.拋物線y=﹣
+bx+c經過點A與點C,且與x軸的另一個交點為點B.點D在該拋物線上,且位于直線AC的上方.
(1)求上述拋物線的表達式;
(2)聯(lián)結BC、BD,且BD交AC于點E,如果△ABE的面積與△ABC的面積之比為4:5,求∠DBA的余切值;
(3)過點D作DF⊥AC,垂足為點F,聯(lián)結CD.若△CFD與△AOC相似,求點D的坐標.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將正方形ABCD繞點A逆時針旋轉30°得到AB′C′D′,如果AB=1,點C與C′的距離為( )
![]()
A.
B.
﹣
C. 1 D.
﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)
的圖象與反比例函數(shù)
的圖象交于
兩點,與
軸、
軸分別交于C、D兩點.已知:
,點B的坐標為
.
(1)求該反比例函數(shù)的解析式和點D的坐標;
(2)點M在射線CA上,且MA=2AC,求△MOB的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,點E是AC的一點,連接EB,過點A做AM⊥BE,垂足為M,AM與BD相交于點F.
![]()
(1)猜想:如圖(1)線段OE與線段OF的數(shù)量關系為 ;
(2)拓展:如圖(2),若點E在AC的延長線上,AM⊥BE于點M,AM、DB的延長線相交于點F,其他條件不變,(1)的結論還成立嗎?如果成立,請僅就圖(2)給出證明;如果不成立,請說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com