| A. | B. | C. | D. |
分析 過點(diǎn)E作EM⊥CD于點(diǎn)M,EN⊥AD于點(diǎn)N,則可證明△ENK≌△EML,從而得出重疊部分的面積不變,繼而可得出函數(shù)關(guān)系圖象
解答 解:如右圖,過點(diǎn)E作EM⊥CD于點(diǎn)M,EN⊥AD于點(diǎn)N,![]()
∵點(diǎn)E是正方形的對(duì)稱中心,
∴EN=EM,
由旋轉(zhuǎn)的性質(zhì)可得∠NEK=∠MEL,
在Rt△ENK和Rt△EML中,
$\left\{\begin{array}{l}{∠NEK=∠EML}\\{EN=EM}\\{∠ENK=∠EML}\end{array}\right.$,
故可得△ENK≌△EML,即陰影部分的面積始終等于正方形面積的$\frac{1}{4}$.
故選:B.
點(diǎn)評(píng) 此題考查了動(dòng)點(diǎn)問題的函數(shù)圖象,證明△ENK≌△EML,得出陰影部分的面積始終等于正方形面積的$\frac{1}{4}$是解答本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{3}$+$\sqrt{2}$=$\sqrt{5}$ | B. | $\sqrt{8}$-$\sqrt{2}$=$\sqrt{6}$ | C. | $\sqrt{2}$$•\sqrt{3}$=$\sqrt{6}$ | D. | $\sqrt{8}$$÷\sqrt{2}$=4 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com