分析 先根據(jù)根與系數(shù)的關(guān)系得到x1+x2=$\frac{3}{2}$,x1x2=-$\frac{1}{2}$,再利用代數(shù)式變形得到(x1-x2)2=(x1+x2)2-4x1x2,$\frac{{x}_{2}}{{x}_{1}}+\frac{{x}_{1}}{{x}_{2}}$=$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}}{{x}_{1}{x}_{2}}$,(x1-2)(x2-2)=x1x2-2(x1+x2)+4,|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$,
然后利用整體代入的方法計(jì)算.
解答 解:根據(jù)題意得x1+x2=$\frac{3}{2}$,x1x2=-$\frac{1}{2}$,
(1)(x1-x2)2=(x1+x2)2-4x1x2=($\frac{3}{2}$)2-4×(-$\frac{1}{2}$)=$\frac{17}{4}$;
(2)$\frac{{x}_{2}}{{x}_{1}}+\frac{{x}_{1}}{{x}_{2}}$=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{{x}_{1}{x}_{2}}$=$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}}{{x}_{1}{x}_{2}}$=$\frac{(\frac{3}{2})^{2}-2×(-\frac{1}{2})}{-\frac{1}{2}}$=-$\frac{13}{2}$;
(3)(x1-2)(x2-2)=x1x2-2(x1+x2)+4=-$\frac{1}{2}$-2×$\frac{3}{2}$+4=$\frac{1}{2}$;
(4)|x1-x2|=$\sqrt{({x}_{1}-{x}_{2})^{2}}$=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{(\frac{3}{2})^{2}-4×(-\frac{1}{2})}$=$\frac{\sqrt{17}}{2}$.
點(diǎn)評 本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時(shí),x1+x2=-$\frac{a}$,x1x2=$\frac{c}{a}$.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com