欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.若x1、x2是一元二次方程-2x2+3x+1=0的兩個(gè)根,求下列代數(shù)式的值.
(1)$({x}_{1}-{x}_{2})^{2}$
(2)$\frac{{x}_{2}}{{x}_{1}}+\frac{{x}_{1}}{{x}_{2}}$
(3)(x1-2)(x2-2)
(4)|x1-x2|

分析 先根據(jù)根與系數(shù)的關(guān)系得到x1+x2=$\frac{3}{2}$,x1x2=-$\frac{1}{2}$,再利用代數(shù)式變形得到(x1-x22=(x1+x22-4x1x2,$\frac{{x}_{2}}{{x}_{1}}+\frac{{x}_{1}}{{x}_{2}}$=$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}}{{x}_{1}{x}_{2}}$,(x1-2)(x2-2)=x1x2-2(x1+x2)+4,|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$,
然后利用整體代入的方法計(jì)算.

解答 解:根據(jù)題意得x1+x2=$\frac{3}{2}$,x1x2=-$\frac{1}{2}$,
(1)(x1-x22=(x1+x22-4x1x2=($\frac{3}{2}$)2-4×(-$\frac{1}{2}$)=$\frac{17}{4}$;
(2)$\frac{{x}_{2}}{{x}_{1}}+\frac{{x}_{1}}{{x}_{2}}$=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{{x}_{1}{x}_{2}}$=$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}}{{x}_{1}{x}_{2}}$=$\frac{(\frac{3}{2})^{2}-2×(-\frac{1}{2})}{-\frac{1}{2}}$=-$\frac{13}{2}$;
(3)(x1-2)(x2-2)=x1x2-2(x1+x2)+4=-$\frac{1}{2}$-2×$\frac{3}{2}$+4=$\frac{1}{2}$;
(4)|x1-x2|=$\sqrt{({x}_{1}-{x}_{2})^{2}}$=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{(\frac{3}{2})^{2}-4×(-\frac{1}{2})}$=$\frac{\sqrt{17}}{2}$.

點(diǎn)評 本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時(shí),x1+x2=-$\frac{a}$,x1x2=$\frac{c}{a}$.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.計(jì)算(2$\sqrt{2}$-3)2010$•(2\sqrt{2}+3)$2012=17+12$\sqrt{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在Rt△ABC中,∠C=90,AM是中線,MN⊥AB,垂足為點(diǎn)N,求證:AN2-BN2=AC2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.計(jì)算:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$…+$\frac{1}{2015×2016}$=$\frac{2015}{2016}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.|x-3|的幾何意義是數(shù)軸上表示數(shù)x的點(diǎn)與表示數(shù)3的點(diǎn)之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.化簡下列各數(shù).
(1)+(-3)
(2)-(+5)
(3)-[-(+1)]
(4)-(-4$\frac{1}{2}$)
(5)+(+2.6)
(6)-{-[-(-$\frac{3}{7}$)]}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.若a<0,化簡-|-a|.
解答:因?yàn)閍<0  …①
     所以-a>0  …②
     所以-|-a|=-a  …③
以上解答過程錯在③步,為什么?請給予更正.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)方程4x2-7x-3=0的兩根為x1、x2,不解方程,求下列各式的值:
(1)${{x}_{1}}^{2}+{{x}_{2}}^{2}$
(2)(x1-3)(x2-3)
(3)$\frac{{x}_{2}}{{x}_{1}+x}+\frac{{x}_{1}}{{x}_{2}+1}$
(4)|x1-x2|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.若有理數(shù)a滿足$\root{3}{1-{a}^{2}}=1-{a}^{2}$,$\sqrt{1-\frac{1}{3}b}=0$,求$\root{a}$的值.

查看答案和解析>>

同步練習(xí)冊答案