分析 (1)由題意作輔助線,作EH⊥OB于點(diǎn)H,由BO=4,求得OE,然后求出OH,EH,從而得出點(diǎn)E的坐標(biāo);
(2)根據(jù)題意,當(dāng)E點(diǎn)到達(dá)△AOB的外面,且點(diǎn)D在點(diǎn)B左側(cè)時(shí),2<x<4即可;
(3)假設(shè)存在,由OO′=4-2-DB,而DF=DB,從而得到OO′=EF;
解答 解:(1)作EH⊥OB于點(diǎn)H,
∵△OED是等邊三角形,
∴∠EOD=60°.
又∵∠ABO=30°,
∴∠OEB=90°.
∵BO=4,
∴OE=$\frac{1}{2}$OB=2.
∵△OEH是直角三角形,且∠OEH=30°
∴OH=1,EH=$\sqrt{3}$,
∴E(1,$\sqrt{3}$).
(2)當(dāng)2<x<4,符合題意,
如圖,![]()
所求重疊部分四邊形OD′NE的面積為:
S△OD′E-S△E′EN=$\frac{\sqrt{3}}{4}$x2-$\frac{1}{2}$E′E×EN
=$\frac{\sqrt{3}}{4}$x2-$\frac{x-2}{2}$×$\sqrt{3}$(x-2)
=-$\frac{\sqrt{3}}{4}$x2+2$\sqrt{3}$x-2$\sqrt{3}$
(3)存在線段EF=OO'.
∵∠ABO=30°,∠EDO=60°
∴∠ABO=∠DFB=30°,
∴DF=DB.
∴OO′=4-2-DB=2-DB=2-DF=ED-FD=EF
點(diǎn)評(píng) 此題是幾何變換綜合題,主要考查利用三角函數(shù)求線段長(zhǎng)度,動(dòng)點(diǎn)問(wèn)題是中考的重點(diǎn)內(nèi)容,此題難度較大.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 12 | B. | 10 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | k≥1 | B. | k>1 | C. | k≥-1 | D. | k>-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com