分析 根據(jù)等式的性質(zhì)得出∠BAD=∠CAE,再利用全等三角形的判定和性質(zhì)解答即可.
解答 解:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,
即∠BAD=∠CAE,
在△BAD與△CAE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△BAD≌△CAE(SAS),
∴∠ABD=∠2=35°,
∴∠3=∠1+∠ABD=35°+20°=55°.
故答案為:55°.
點評 此題考查全等三角形的判定和性質(zhì),關鍵是根據(jù)等式的性質(zhì)得出∠BAD=∠CAE.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:2016-2017學年廣東省梅州市七年級下學期第一次月考數(shù)學試卷(解析版) 題型:填空題
如圖,直線AB、CD相交于點O,∠1=50°,則∠2=____度.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com