分析 (1)連接OD,根據(jù)圓周角定理和三角形的外角的性質(zhì)計(jì)算,得到∠COD+∠C=90°,根據(jù)切線的判定定理證明;
(2)根據(jù)圓周角定理得到∠BOD=2∠F,根據(jù)題意求出∠A,根據(jù)扇形面積公式計(jì)算,求出陰影部分的面積.
解答 解:(1)
連接OD,
∵OD=OB,
∴∠ODB=∠1,
由圓周角定理得,∠COD=∠1+∠ODB=2∠1,
∵∠C+∠A=90°,
∴∠COD+∠C=90°,
即OD⊥AC,
∴AC是⊙O的切線;
(2)由圓周角定理得,∠BOD=2∠F,
∵∠A=∠F,
∴∠BOD=2∠A,
∴∠A=60°,∠BOD=120°,
陰影部分的面積=$\frac{120π×{2}^{2}}{360}$-$\frac{1}{2}×$2×2×sin60°×2×cos60°=$\frac{4π}{3}$-$\frac{\sqrt{3}}{2}$.
點(diǎn)評(píng) 本題考查的是切線的判定、扇形面積的計(jì)算,掌握經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的切線、扇形的面積公式是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2 | B. | $\frac{5}{3}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com