分析 (1)連接OD,由D為弧BC的中點(diǎn),得到兩條弧相等,進(jìn)而得到兩個(gè)同位角相等,確定出OD與AE平行,利用兩直線平行同旁內(nèi)角互補(bǔ)得到OD與DE垂直,即可得證;
(2)過(guò)O作OF垂直于AC,利用垂徑定理得到F為AC中點(diǎn),再由四邊形OFED為矩形,求出FE的長(zhǎng),由AF+EF求出AE的長(zhǎng)即可.
解答
(1)證明:連接OD,
∵D為$\widehat{BC}$的中點(diǎn),
∴$\widehat{BD}$=$\widehat{CD}$,
∴∠BOD=∠BAE,
∴OD∥AE,
∵DE⊥AC,
∴∠ADE=90°,
∴∠AED=90°,
∴OD⊥DE,
則DE為圓O的切線;
(2)解:過(guò)點(diǎn)O作OF⊥AC,
∵AC=10,
∴AF=CF=$\frac{1}{2}$AC=5,
∵∠OFE=∠DEF=∠ODE=90°,
∴四邊形OFED為矩形,
∴FE=OD=$\frac{1}{2}$AB,
∵AB=12,
∴FE=6,
則AE=AF+FE=5+6=11.
點(diǎn)評(píng) 此題考查了切線的性質(zhì)與判定,勾股定理,以及垂徑定理,熟練掌握各自的性質(zhì)及定理是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 567×103 | B. | 56.7×104 | C. | 5.67×105 | D. | 0.567×106 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ① | B. | ③ | C. | ②或④ | D. | ①或③ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 對(duì)重慶市初中學(xué)生每天閱讀時(shí)間的調(diào)查 | |
| B. | 對(duì)端午節(jié)期間市場(chǎng)上粽子質(zhì)量情況的調(diào)查 | |
| C. | 對(duì)某批次手機(jī)的防水功能的調(diào)查 | |
| D. | 對(duì)某校九年級(jí)3班學(xué)生肺活量情況的調(diào)查 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5.1米 | B. | 6.3米 | C. | 7.1米 | D. | 9.2米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a5+a5=a10 | B. | a7÷a=a6 | C. | a3•a2=a6 | D. | (-a3)2=-a6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com