分析 (1)ED是AC的垂直平分線,可得AE=EC;∠A=∠ACE;已知∠A=36,可求∠ACE,再根據三角形外角的性質即可求解;
(2)根據等腰三角形性質和三角形內角和定理求出∠B=∠ACB=72°,求出∠BEC=∠B,推出BC=CE即可.
解答 解:(1)∵DE垂直平分AC,
∴CE=AE,
∴∠ECD=∠A=36°,
∴∠BEC=∠A+∠ECD=36°+36°=72°;
(2)∵AB=AC,∠A=36°,
∴∠B=∠ACB=72°,
∴∠BEC=∠A+∠ECD=72°,
∴∠BEC=∠B,
∴BC=EC=5.
點評 本題考查了線段垂直平分線,三角形內角和定理,等腰三角形性質,三角形外角的性質的應用,注意:線段垂直平分線上的點到線段兩個端點的距離相等.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
| A. | $\sqrt{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com