分析 先利用△MCN的周長等于正方形ABCD周長的一半可得到MN=DM+BN,△ADM繞點A順時針旋轉(zhuǎn)90°得到△ABE,如圖,利用旋轉(zhuǎn)的性質(zhì)得AE=AM,BE=DM,∠ABE=∠ADM,∠MAE=90°,接著證明△AMN≌△AEN得到∠MAN=∠EAN,從而得到∠MAN=$\frac{1}{2}$∠MAE=45°.
解答 解:∵△MCN的周長等于正方形ABCD周長的一半,
∴MN+CM+CN=CD+CB,![]()
∴MN=DM+BN,
∵AD=AB,∠DAB=90°,
∴△ADM繞點A順時針旋轉(zhuǎn)90°得到△ABE,如圖,
∴AE=AM,BE=DM,∠ABE=∠ADM,∠MAE=90°,
∵∠ABC=90°,
∴點E在CB的延長線上,
∴EN=BE+NB=DM+BN=MN,
在△AMN和△AEN中
$\left\{\begin{array}{l}{AM=AE}\\{AN=AN}\\{MN=EN}\end{array}\right.$,
∴△AMN≌△AEN,
∴∠MAN=∠EAN,
∴∠MAN=$\frac{1}{2}$∠MAE=45°.
點評 本題考查了正方形的性質(zhì):正方形的四條邊都相等,四個角都是直角;正方形的兩條對角線相等,互相垂直平分,并且每條對角線平分一組對角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì).解決本題的關(guān)鍵是構(gòu)建△AEN與△AMN全等.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 89° | B. | 91° | C. | 92° | D. | 90° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com