分析 (1)由正方形的性質(zhì)證得△BQP≌△PFE,從而得到DF=EF,由于△PCF和△PAG均為等腰直角三角形,故有PA=$\sqrt{2}$PG,PC=$\sqrt{2}$CF,易得PA=$\sqrt{2}$EF,進而得到PC、PA、CE滿足關(guān)系為:PC=$\sqrt{2}$CE+PA;
(2)同(1)證得DF=EF,三條線段的數(shù)量關(guān)系是PA-PC=$\sqrt{2}$CE.
解答 解:
(1)如圖2,延長FP交AB于點Q,![]()
①∵AC是正方形ABCD對角線,
∴∠QAP=∠APQ=45°,
∴AQ=PQ,
∵AB=QF,
∴BQ=PF,
∵PE⊥PB,
∴∠QPB+∠FPE=90°,
∵∠QBP+∠QPB=90°,
∴∠QBP=∠FPE,
∵∠BQP=∠PFE=90°,
∴△BQP≌△PFE,
∴QP=EF,
∵AQ=DF,
∴DF=EF;
②如圖2,過點P作PG⊥AD.
∵PF⊥CD,∠PCF=∠PAG=45°,
∴△PCF和△PAG均為等腰直角三角形,
∵四邊形DFPG為矩形,
∴PA=$\sqrt{2}$PG,PC=$\sqrt{2}$CF,
∵PG=DF,DF=EF,
∴PA=$\sqrt{2}$EF,
∴PC=$\sqrt{2}$CF=$\sqrt{2}$(CE+EF)=$\sqrt{2}$CE+$\sqrt{2}$EF=$\sqrt{2}$CE+PA,
即PC、PA、CE滿足關(guān)系為:PC=$\sqrt{2}$CE+PA;
(2)結(jié)論①仍成立;結(jié)論②不成立,此時②中三條線段的數(shù)量關(guān)系是PA-PC=$\sqrt{2}$CE.
如圖3:![]()
①∵PB⊥PE,BC⊥CE,
∴B、P、C、E四點共圓,
∴∠PEC=∠PBC,
在△PBC和△PDC中有:BC=DC(已知),∠PCB=∠PCD=45°(已證),PC邊公共邊,
∴△PBC≌△PDC(SAS),
∴∠PBC=∠PDC,
∴∠PEC=∠PDC,
∵PF⊥DE,
∴DF=EF;
②同理:PA=$\sqrt{2}$PG=$\sqrt{2}$DF=$\sqrt{2}$EF,PC=$\sqrt{2}$CF,
∴PA=$\sqrt{2}$EF=$\sqrt{2}$(CE+CF)=$\sqrt{2}$CE+$\sqrt{2}$CF=$\sqrt{2}$CE+PC
即PC、PA、CE滿足關(guān)系為:PA-PC=$\sqrt{2}$CE.
點評 本題是一個動態(tài)幾何題,考查用正方形性質(zhì)、線段垂直平分線的性質(zhì)、三角形相似的條件和性質(zhì)進行有條理的思考和表達能力.利用條件構(gòu)造三角形全等是解題的關(guān)鍵.本題涉及知識點較多,綜合性很強,難度適中.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ∠1和∠2 | B. | ∠2和∠3 | C. | ∠1和∠3 | D. | ∠3和∠4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 120° | B. | 100° | C. | 90° | D. | 80° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | π | B. | 2π | C. | 4π | D. | 8π |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com