分析 (1)連接OC,作OD⊥PB于D點.證明OD=OC即可.根據(jù)角的平分線性質(zhì)易證;
(2)設(shè)PO交⊙O于F,連接CF.根據(jù)勾股定理得PO=5,則PE=8.證明△PCF∽△PEC,得CF:CE=PC:PE=1:2.根據(jù)勾股定理求解CE.
解答 (1)證明:連接OC,作OD⊥PB于D點.
∵⊙O與PA相切于點C,![]()
∴OC⊥PA,
∵∠OPA=$\frac{1}{2}$∠APB,
∴點O在∠APB的平分線上,OC⊥PA,OD⊥PB,
∴OD=OC.
∴直線PB與⊙O相切;
(2)解:設(shè)PO交⊙O于F,連接CF.
∵OC=3,PC=4,
∴PO=5,PE=8.
∵⊙O與PA相切于點C,
∴∠PCF=∠E.
又∵∠CPF=∠EPC,
∴△PCF∽△PEC,
∴CF:CE=PC:PE=4:8=1:2.
∵EF是直徑,
∴∠ECF=90°.
設(shè)CF=x,則EC=2x.
則x2+(2x)2=62,
解得x=$\frac{6\sqrt{5}}{5}$,
∴CE=$\frac{12\sqrt{5}}{5}$.
點評 此題考查了切線的判定、相似三角形的性質(zhì).注意:當(dāng)不知道直線與圓是否有公共點而要證明直線是圓的切線時,可通過證明圓心到直線的距離等于圓的半徑,來解決問題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 調(diào)查札幌亞冬會女子越野滑雪1.4公里決賽參賽運(yùn)動員興奮劑的使用情況 | |
| B. | 調(diào)查中國民眾對美國在韓部署薩德系統(tǒng)持反對態(tài)度的比例 | |
| C. | 調(diào)查中國國產(chǎn)航母各零部件的質(zhì)量 | |
| D. | 調(diào)查某班學(xué)生對感動中國2016年度人物我校高2004級校友秦珇飛的知曉率 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com