分析 如圖,作EM⊥OF于M.設(shè)EM=x.首先證明EM=FM,在Rt△OEM中,理由勾股定理求出x即可解決問(wèn)題.
解答 解:如圖,作EM⊥OF于M.設(shè)EM=x.![]()
∵四邊形OABC是矩形,
∴∠AOC=90°,
∵OA=OF=7,
∴∠F=∠FAO=45°,
∵∠FME=∠FOA=90°,
∴∠FEM=45°=∠F,
∴ME=MF=x,OM=7-x,
在Rt△OEM中,∵OM2+EM2=OE2,
∴x2+(7-x)2=52,
解得x=3或4,
∴S△COE=$\frac{1}{2}$×5×3=$\frac{15}{2}$或∴S△COE=$\frac{1}{2}$×5×4=10,
故答案為$\frac{15}{2}$或10
點(diǎn)評(píng) 本題考查翻折變換、矩形的性質(zhì)、等腰直角三角形的性質(zhì)、勾股定理、三角形的面積等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)建方程解決問(wèn)題,屬于中考填空題中的壓軸題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -3 | B. | -2 | C. | -1 | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ①、②是真命題 | B. | ②、③是真命題 | C. | ①、③是假命題 | D. | 以上結(jié)論都錯(cuò) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 14 | B. | 16 | C. | 20 | D. | 28 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{\frac{x}{2}+\frac{y}{3}=6}\\{x=4}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{2x+z=0}\\{3x-y=\frac{1}{5}}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{\frac{1}{x}+y=5}\\{2x-5y=1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+y=3}\\{xy=1}\end{array}\right.$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com