分析 (1)由條件可利用ASA證得結(jié)論;
(2)由(1)的結(jié)合可得OE=OF,則可求得AE=CF,可求得OA=OC,則可證得四邊形ABCD為平行四邊形.
解答 證明:
(1)∵∠EOB與∠FOD是對頂角,
∴∠EOB=∠FOD,
在△BEO和△DFO中
$\left\{\begin{array}{l}{∠1=∠2}\\{OB=OD}\\{∠EOB=∠FOD}\end{array}\right.$
∴△BEO≌△DFO(ASA);
(2)由(1)可知△BEO≌△DFO,
∴OE=OF,
∵AE=CF,
∴OA=OC,
∵OB=OD,
∴四邊形ABCD為平行四邊形.
點評 本題主要考查全等三角形的判定和性質(zhì),掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(zhì)(即對應(yīng)邊相等、對應(yīng)角相等)是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com