分析 (1)連接EC,則EC=EA=2,然后利用勾股定理就可求出OC的長,從而求出點(diǎn)C的坐標(biāo);
(2)不發(fā)生變化,連接CB,利用等弧所對(duì)的圓周角相等可證明AQ=AC,AC是一個(gè)固定值,所以不發(fā)生變化.再利用勾股定理就可求出AC的長即是AQ的長;
(3)$\frac{PC+PD}{PA}$的值不變化.證明的時(shí)候利用三角形的全等來證明.
解答
解:(1)如圖1,連接EC,則EC=EA=2,
∵OE=1,
∴OC=$\sqrt{C{E}^{2}-O{E}^{2}}$,
,故點(diǎn)C的坐標(biāo)為(0,$\sqrt{3}$);
(2)不發(fā)生變化.![]()
如圖2,連接CB,則∠CPA=∠CBA=∠ACO,
∵∠ACQ=∠ACO+∠OCQ,∠AQC=∠CPA+∠PCQ,
∵CQ平分∠PCD,則∠PCQ=∠OCQ,
則∠ACQ=∠AQC,得AQ=AC=2;
(3)結(jié)論①不變,在PD的延長線上截取DM=PC,則PC+PD=PM,![]()
如圖3,連接AM,
在△PAC和△MAD中
$\left\{\begin{array}{l}{PC=MD}\\{∠PCA=∠ADM}\\{CA=AD}\end{array}\right.$,
∴△PAC≌△MAD(SAS),
∴MA=PA,∠MAP=∠DAC=120°,
則△PAM是以30°為底角的等腰三角形,
∴$\frac{PM}{PA}$=$\frac{PC+PD}{PA}$=$\sqrt{3}$.
點(diǎn)評(píng) 本題綜合考查了圓的知識(shí),以及全等三角形的判定.所以學(xué)生學(xué)習(xí)時(shí)一定要會(huì)把所學(xué)的知識(shí)靈活的運(yùn)用起來.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com