分析 延長BA、CE相交于點(diǎn)F,利用“角邊角”證明△BCE和△BFE全等,根據(jù)全等三角形對應(yīng)邊相等可得CE=EF,根據(jù)等角的余角相等求出∠ABD=∠ACF,然后利用“角邊角”證明△ABD和△ACF全等,根據(jù)全等三角形對應(yīng)邊相等可得BD=CF,然后求解即可.
解答
解:BD=2CE.
理由如下:如圖,延長BA、CE相交于點(diǎn)F,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
在△BCE和△BFE中,$\left\{\begin{array}{l}{∠ABD=∠CBD}\\{BE=BE}\\{∠BEF=∠BEC=90°}\end{array}\right.$,
∴△BCE≌△BFE(ASA),
∴CE=EF,
∵∠A=90°,CE⊥BD,
∴∠ACF+∠F=90°,∠ABD+∠F=90°,
∴∠ABD=∠ACF,
在△ABD和△ACF中,$\left\{\begin{array}{l}{∠ABD=∠ACF}\\{AB=AC}\\{∠BAC=∠CAF=90°}\end{array}\right.$,
∴△ABD≌△ACF(ASA),
∴BD=CF,
∵CF=CE+EF=2CE,
∴BD=2CE.
點(diǎn)評 本題考查了全等三角形的判定與性質(zhì),等角的余角相等的性質(zhì),熟練掌握三角形全等的判定方法是解題的關(guān)鍵,難點(diǎn)在于作輔助線構(gòu)造出全等三角形并得到與BD相等的線段CF.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com