分析 (1)在圖(1)(2)中可過P作平行線,根據(jù)平行線的性質(zhì)可求得∠A與∠P、∠C的關(guān)系;在(3)中根據(jù)平行線的性質(zhì)和三角形內(nèi)角和定理可求得∠A與∠P、∠C的關(guān)系;在(4)中延長BA交PC于點E,利用平行線的性質(zhì)和三角形外角的性質(zhì)可求得∠A與∠P、∠C的關(guān)系;
(2)過點P作PE∥AB,得到PE∥CD,由平行線的性質(zhì)得到∠C=∠EPC,∠EPA=∠A,而∠EPA=∠P+∠EPC,由此推出結(jié)論.
解答
解:(1)①過P作PE∥AB,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠1+∠A=∠2+∠C=180°,
∴∠APC=360°-(∠A+∠C),
②過P作PE∥AB,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠1=∠A,∠2=∠C,
∴∠APC=∠A+∠C,
③∵AB∥CD,
∴∠1=∠C,
∴∠P=∠1-∠A=∠C-∠A,
④延長BA交PC于E,
∵AB∥CD,
∴∠1=∠C,
∴∠PAB=∠P+∠1,
∴∠P=∠A-∠C;
故答案為:∠APC=360°-(∠A+∠C),∠APC=∠A+∠C,∠P=∠C-∠A,∠P=∠A-∠C;![]()
(2)過點P作PE∥AB,
∵AB∥CD,
∴PE∥CD,
∴∠C=∠EPC,∠EPA=∠A,
而∠EPA=∠P+∠EPC,
∴∠A=∠P+∠C,
∠P=∠A-∠C.
點評 本題主要考查平行線的性質(zhì),掌握平行線的判定和性質(zhì)是解題的關(guān)鍵,即①同位角相等?兩直線平行,②內(nèi)錯角相等?兩直線平行,③同旁內(nèi)角互補?兩直線平行,④a∥b,b∥c⇒a∥c.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1.1 | B. | 1.2 | C. | 1.3 | D. | 1.4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①②③④ | B. | ①②③ | C. | ②③④ | D. | ③④ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com