| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
分析 根據(jù)正五邊形的性質(zhì)得到∠ABE=∠AEB=∠EAD=36°,根據(jù)三角形的內(nèi)角和即可得到結(jié)論;由于∠AEN=108°-36°=72°,∠ANE=36°+36°=72°,得到∠AEN=∠ANE,根據(jù)等腰三角形的判定定理得到AE=AN,同理DE=DM,根據(jù)相似三角形的性質(zhì)得到$\frac{AE}{AD}=\frac{AM}{AE}$,等量代換得到AN2=AM•AD;根據(jù)AE2=AM•AD,列方程得到MN=3-$\sqrt{5}$;在正五邊形ABCDE中,由于BE=CE=AD=1+$\sqrt{5}$,得到BH=$\frac{1}{2}$BC=1,根據(jù)勾股定理得到EH=$\sqrt{(1+\sqrt{5})^{2}-{1}^{2}}$=$\sqrt{5+2\sqrt{5}}$,根據(jù)三角形的面積得到結(jié)論.
解答 解:∵∠BAE=∠AED=108°,
∵AB=AE=DE,
∴∠ABE=∠AEB=∠EAD=36°,
∴∠AME=180°-∠EAM-∠AEM=108°,故①正確;
∵∠AEN=108°-36°=72°,∠ANE=36°+36°=72°,
∴∠AEN=∠ANE,
∴AE=AN,![]()
同理DE=DM,
∴AE=DM,
∵∠EAD=∠AEM=∠ADE=36°,
∴△AEM∽△ADE,
∴$\frac{AE}{AD}=\frac{AM}{AE}$,
∴AE2=AM•AD;
∴AN2=AM•AD;故②正確;
∵AE2=AM•AD,
∴22=(2-MN)(4-MN),
∴MN=3-$\sqrt{5}$;故③正確;
在正五邊形ABCDE中,
∵BE=CE=AD=1+$\sqrt{5}$,
∴BH=$\frac{1}{2}$BC=1,
∴EH=$\sqrt{(1+\sqrt{5})^{2}-{1}^{2}}$=$\sqrt{5+2\sqrt{5}}$,
∴S△EBC=$\frac{1}{2}$BC•EH=$\frac{1}{2}$×2×$\sqrt{5+2\sqrt{5}}$=$\sqrt{5+2\sqrt{5}}$,故④錯(cuò)誤;
故選C.
點(diǎn)評(píng) 本題考查了相似三角形的判定和性質(zhì),勾股定理,正五邊形的性質(zhì),熟練掌握正五邊形的性質(zhì)是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 必然事件的概率是1 | |
| B. | 如果某種游戲活動(dòng)的中獎(jiǎng)率為40%,那么參加這種活動(dòng)10次必有4次中獎(jiǎng) | |
| C. | 了解一批燈泡的使用壽命適合用抽樣調(diào)查 | |
| D. | 數(shù)據(jù)1、2、2、3的平均數(shù)是2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com