| A. | 4個(gè) | B. | 3個(gè) | C. | 2個(gè) | D. | 1個(gè) |
分析 ①只要證明OH是△DBF的中位線即可得出結(jié)論;
②根據(jù)OH是△BFD的中位線,得出GH=$\frac{1}{2}$CF,由GH<$\frac{1}{4}$BC,可得出結(jié)論;
③易證得△ODH是等腰三角形,繼而證得OD=$\frac{1}{2}$BF;
④根據(jù)四邊形ABCD是正方形,BE是∠DBC的平分線可求出Rt△BCE≌Rt△DCF,再由∠EBC=22.5°即可求出結(jié)論.
解答 解:∵EC=CF,∠BCE=∠DCF,BC=DC,![]()
∴△BCE≌△DCF,
∴∠CBE=∠CDF,
∵∠CBE+∠BEC=90°,∠BEC=∠DEH,
∴∠DEH+∠CDF=90°,
∴∠BHD=∠BHF=90°,
∵BH=BH,∠HBD=∠HBF,
∴△BHD≌△BHF,
∴DH=HF,∵OD=OB
∴OH是△DBF的中位線
∴OH∥BF;故①正確;
∴OH=$\frac{1}{2}$BF,∠DOH=∠CBD=45°,
∵OH是△BFD的中位線,
∴DG=CG=$\frac{1}{2}$BC,GH=$\frac{1}{2}$CF,
∵CE=CF,
∴GH=$\frac{1}{2}$CF=$\frac{1}{2}$CE
∵CE<CG=$\frac{1}{2}$BC,
∴GH<$\frac{1}{4}$BC,故②錯(cuò)誤.
∵四邊形ABCD是正方形,BE是∠DBC的平分線,
∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,
∵CE=CF,
∴Rt△BCE≌Rt△DCF,
∴∠EBC=∠CDF=22.5°,
∴∠BFH=90°-∠CDF=90°-22.5°=67.5°,
∵OH是△DBF的中位線,CD⊥AF,
∴OH是CD的垂直平分線,
∴DH=CH,
∴∠CDF=∠DCH=22.5°,
∴∠HCF=90°-∠DCH=90°-22.5°=67.5°,
∴∠CHF=180°-∠HCF-∠BFH=180°-67.5°-67.5°=45°,故④正確;
∴∠ODH=∠BDC+∠CDF=67.5°,
∴∠OHD=180°-∠ODH-∠DOH=67.5°,
∴∠ODH=∠OHD,
∴OD=OH=$\frac{1}{2}$BF;故③正確.
故選B.
點(diǎn)評(píng) 此題考查了全等三角形的判定和性質(zhì)、等腰三角形的判定與性質(zhì)以及正方形的性質(zhì).解答此題的關(guān)鍵是作出輔助線,構(gòu)造等腰直角三角形,利用等腰直角三角形的性質(zhì)結(jié)合角平分線的性質(zhì)逐步解答.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 若a>b,則a-1>b-1 | B. | 若3a>3b,則a>b | ||
| C. | 若a>b,且c≠0,則ac>bc | D. | 若a>b,則7-a<7-b |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3cm | B. | 6cm | C. | 13cm | D. | 5.5cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 21 | B. | 27 | C. | 21 或27 | D. | 不能確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com