| A. | 10 | B. | 11 | C. | 12 | D. | 13 |
分析 連接AD、BF,設(shè)AC=a,BC=b,首先證明AD+BF=2OP,得a+b=12,再根據(jù)a2+b2=100求出$\frac{1}{2}$ab即可解決問題.
解答 解:
如圖,連接AD、BF.設(shè)AC=a,BC=b,
∵AB是直徑,
∴∠ACB=90°
∵四邊形ACDE、四邊形BCFG都是正方形,
∴∠ACD=∠BCF=∠ACB=90°,
∴A、C、F共線,B、C、D共線,
∴∠DAC=∠BFC=45°,
∴AD∥BF,
∵DP=PF,AO=OB,
∴AD+BF=2PO,
∴$\sqrt{2}$a+$\sqrt{2}$b=12$\sqrt{2}$,
∴a+b=12,
又∵a2+b2=100,
∴a2+2ab+b2=144,
∴2ab=44,
∴S△ABC=$\frac{1}{2}$ab=11,
故選B.
點(diǎn)評 本題考查正方形的性質(zhì)、圖象、中位線定理,勾股定理等知識,解題的關(guān)鍵是添加輔助線,構(gòu)造梯形,利用梯形中位線解決問題,屬于中考?碱}型.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | a>b>c | B. | b>a>c | C. | c>b>a | D. | c>a>b |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | a2+a2=a4 | B. | (a+b)2=a2+b2 | C. | $\sqrt{9}$=±3 | D. | (-a2)3=-a6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | 0 | C. | -2 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | 1 | C. | -1 | D. | 2015 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com