| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 根據(jù)正方形對(duì)角線的性質(zhì)可得出當(dāng)E移動(dòng)到與C重合時(shí),F(xiàn)點(diǎn)和D點(diǎn)重合,此時(shí)G點(diǎn)為AC中點(diǎn),故①錯(cuò)誤;求得∠BAE=∠CBF,根據(jù)正方形的性質(zhì)可得AB=BC,∠ABC=∠C=90°,然后利用“角角邊”證明△ABE和△BCF全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得AE=BF,判斷出②正確;根據(jù)題意,G點(diǎn)的軌跡是以AB中點(diǎn)O為圓心,AO為半徑的圓弧,然后求出弧的長(zhǎng)度,判斷出③錯(cuò)誤;由于OC和OG的長(zhǎng)度是一定的,因此當(dāng)O、G、C在同一條直線上時(shí),CG取最小值,根據(jù)勾股定理求出最小CG長(zhǎng)度.
解答 解:∵在正方形ABCD中,BF⊥AE,![]()
∴∠AGB保持90°不變,
∴G點(diǎn)的軌跡是以AB中點(diǎn)O為圓心,AO為半徑的圓弧,
∴當(dāng)E移動(dòng)到與C重合時(shí),F(xiàn)點(diǎn)和D點(diǎn)重合,此時(shí)G點(diǎn)為AC中點(diǎn),
∴AG=GE,故①錯(cuò)誤;
∵BF⊥AE,
∴∠AEB+∠CBF=90°,
∵∠AEB+∠BAE=90°,
∴∠BAE=∠CBF,
在△ABE和△BCF中,
$\left\{\begin{array}{l}{∠BAE=∠CBF}\\{∠ABE=∠BCF=90°}\\{AB=BC}\end{array}\right.$,
∴△ABE≌△BCF(AAS),
∴故②正確;
∵當(dāng)E點(diǎn)運(yùn)動(dòng)到C點(diǎn)時(shí)停止,
∴點(diǎn)G運(yùn)動(dòng)的軌跡為$\frac{1}{4}$圓,
圓弧的長(zhǎng)=$\frac{1}{4}$π×2=$\frac{1}{2}$π,故③錯(cuò)誤;
由于OC和OG的長(zhǎng)度是一定的,因此當(dāng)O、G、C在同一條直線上時(shí),CG取最小值,
OC=$\sqrt{O{B}^{2}+B{C}^{2}}$=$\sqrt{5}$,
CG的最小值為OC-OG=$\sqrt{5}$-1,故④正確;
綜上所述,正確的結(jié)論有②④.
故選C.
點(diǎn)評(píng) 本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),弧長(zhǎng)的計(jì)算,勾股定理的應(yīng)用,熟記性質(zhì)并求出△ABE和△BCF全等是解題的關(guān)鍵,此題求運(yùn)動(dòng)軌跡有一定的難度.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 100° | B. | 105° | C. | 115° | D. | 120° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 逐漸變短 | B. | 先變短后變長(zhǎng) | C. | 先變長(zhǎng)后變短 | D. | 逐漸變長(zhǎng) |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com