分析 (1)根據三角形內角和定理得∠BAC=180°-∠B-∠C=80°,然后根據角平分線定義得∠BAE=$\frac{1}{2}$∠BAC=40°;
(2)由于AD⊥BC,則∠ADE=90°,根據三角形外角性質得∠ADE=∠B+∠BAD,所以∠BAD=90°-∠B=20°,然后利用∠DAE=∠BAE-∠BAD進行計算;
(3)根據三角形內角和定理得∠BAC=180°-∠B-∠C,再根據角平分線定義得∠BAE=$\frac{1}{2}$∠BAC=$\frac{1}{2}$(180°-∠B-∠C)=90°-$\frac{1}{2}$(∠B+∠C),加上∠ADE=∠B+∠BAD=90°,則∠BAD=90°-∠B,然后利用角的和差得∠DAE=∠BAE-∠BAD=90°-$\frac{1}{2}$(∠B+∠C)-(90°-∠B)=$\frac{1}{2}$(∠B-∠C),即∠DAE的度數等于∠B與∠C差的一半.
解答 解:(1)∵∠B+∠C+∠BAC=180°,
∴∠BAC=180°-∠B-∠C=180°-70°-30°=80°,
∵AE平分∠BAC,
∴∠BAE=$\frac{1}{2}$∠BAC=40°;
(2)∵AD⊥BC,
∴∠ADE=90°,
而∠ADE=∠B+∠BAD,
∴∠BAD=90°-∠B=90°-70°=20°,
∴∠DAE=∠BAE-∠BAD=40°-20°=20°;
(3)能.
∵∠B+∠C+∠BAC=180°,
∴∠BAC=180°-∠B-∠C,
∵AE平分∠BAC,
∴∠BAE=$\frac{1}{2}$∠BAC=$\frac{1}{2}$(180°-∠B-∠C)=90°-$\frac{1}{2}$(∠B+∠C),
∵AD⊥BC,
∴∠ADE=90°,
而∠ADE=∠B+∠BAD,
∴∠BAD=90°-∠B,
∴∠DAE=∠BAE-∠BAD=90°-$\frac{1}{2}$(∠B+∠C)-(90°-∠B)=$\frac{1}{2}$(∠B-∠C),
∵∠B-∠C=40°,
∴∠DAE=$\frac{1}{2}$×40°=20°.
點評 本題考查了三角形內角和定理,關鍵是根據三角形內角和是180°和三角形外角性質解答.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com