分析 設BE=x,△DHE的面積為y,通過三角形DHE的面積=三角形CDE的面積+梯形CDHG的面積-三角形EGH的面積,得出關于x,y的函數(shù)關系式,然后根據(jù)函數(shù)的性質求出y取最小值時x的值,并求出此時y的值.
解答 解:設BE=x,△DHE的面積為y,
依題意y=S△CDE+S梯形CDHG-S△EGH,
=$\frac{1}{2}$×3a×(3a-x)+$\frac{1}{2}$×(3a+x)×x-$\frac{1}{2}$×3a×x,
=$\frac{1}{2}$x2-$\frac{3}{2}$ax+$\frac{9}{2}$a2,
y=$\frac{1}{2}$x2-$\frac{3}{2}$ax+$\frac{9}{2}$a2=$\frac{1}{2}$(x-1.5a)2+$\frac{27}{8}$a2,
當x=1.5a,即BE=$\frac{1}{2}$BC,E是BC的中點時,y取最小值,△DHE的面積y的最小值為$\frac{27}{8}$a2.
故答案為:$\frac{27}{8}$a2.
點評 本題主要考查了正方形的性質,二次函數(shù)的綜合應用等知識點,正確得到x和y的二次函數(shù)關系式是解題關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | ($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$) | B. | ($\frac{{\sqrt{3}}}{2}$,$\frac{3}{2}$) | C. | ($\frac{{\sqrt{3}}}{2}$,2) | D. | ($\frac{3}{2}$,$\frac{{\sqrt{3}}}{2}$) |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com