分析 (1)根據(jù)CO與DO的數(shù)量關(guān)系,即可得出∠CDO的度數(shù),進而求出∠AOD=60°,∠BOD=120°,∠AED=30°,點E是$\widehat{BD}$的中點,進而求出∠EAB=30°,即∠BAE=∠AED,得出ED∥AP,即可證得結(jié)論;
(2)利用點E是$\widehat{BD}$的中點,進而求出∠EAB=30°,即可得出∠AFO=90°,即可得出答案.
解答
(1)解:連接OD、OE,
∵AB是半圓的直徑,點O是圓心,點C是OA的中點,
∴2CO=DO,∠DCO=90°,
∴∠CDO=30°,
∴∠AOD=60°,
∴∠BOD=120°,∠AED=30°,
∵點E是$\widehat{BD}$的中點,
∴∠BOE=60°,
∴∠BAE=30°,
∴∠BAE=∠AED,
∴ED∥AP,
∵DP∥AE,
∴四邊形PAED是平行四邊形;
(2)證明:如圖,∵點E是$\widehat{BD}$的中點,
∴$\widehat{DE}$=$\widehat{BE}$,
∵由(1)得∠AOD=60°,
∴∠DOB=120°,
∴∠BOE=60°,
∴∠EAB=30°,
∴∠AFO=90°,
∵DP∥AE,
∴PD⊥OD,
∴直線PD為⊙O的切線.
點評 此題主要考查了垂徑定理以及圓周角定理和切線的判定定理等知識,根據(jù)已知得出∠AFO=90°是解題關(guān)鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 相離 | B. | 相切 | C. | 相交 | D. | 無法確定 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com