| A. | $({\frac{5}{2},0})$ | B. | (3,0) | C. | $({\frac{7}{2},0})$ | D. | (4,0) |
分析 先求出A、B的坐標(biāo),設(shè)直線AB的解析式是y=kx+b,把A、B的坐標(biāo)代入求出直線AB的解析式,根據(jù)三角形的三邊關(guān)系定理得出在△ABP中,|AP-BP|<AB,延長(zhǎng)AB交x軸于P′,當(dāng)P在P′點(diǎn)時(shí),PA-PB=AB,此時(shí)線段AP與線段BP之差達(dá)到最大,求出直線AB于x軸的交點(diǎn)坐標(biāo)即可.
解答
解:∵把A( $\frac{1}{2}$,y1),B(2,y2)代入反比例函數(shù)y=$\frac{1}{x}$得:y1=2,y2=$\frac{1}{2}$,
∴A($\frac{1}{2}$,2),B(2,$\frac{1}{2}$).
在△ABP中,由三角形的三邊關(guān)系定理得:|AP-BP|<AB,
∴延長(zhǎng)AB交x軸于P′,當(dāng)P在P′點(diǎn)時(shí),PA-PB=AB,
即此時(shí)線段AP與線段BP之差達(dá)到最大,
設(shè)直線AB的解析式是y=ax+b(a≠0)
把A、B的坐標(biāo)代入得:$\left\{\begin{array}{l}{2=\frac{1}{2}a+b}\\{\frac{1}{2}=2a+b}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-1}\\{b=\frac{5}{2}}\end{array}\right.$,
∴直線AB的解析式是y=-x+$\frac{5}{2}$,
當(dāng)y=0時(shí),x=$\frac{5}{2}$,即P($\frac{5}{2}$,0);
故選A.
點(diǎn)評(píng) 本題考查了三角形的三邊關(guān)系定理和用待定系數(shù)法求一次函數(shù)的解析式的應(yīng)用,解此題的關(guān)鍵是確定P點(diǎn)的位置.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ①②④ | B. | ①③④ | C. | ①②③ | D. | ①②③④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com