| A. | 9 | B. | 10 | C. | 12 | D. | 13 |
分析 根據(jù)三角形中位線定理求出DE,得到DF∥BM,再證明EC=EF=$\frac{1}{2}$AC,由此即可解決問題.
解答 解:在Rt△ABC中,∵∠ABC=90°,AB=12,BC=5,![]()
∴AC=13,
∵DE是△ABC的中位線,
∴DF∥BM,DE=$\frac{1}{2}$BC=$\frac{5}{2}$,
∴∠EFC=∠FCM,
∵∠FCE=∠FCM,
∴∠EFC=∠ECF,
∴EC=EF=$\frac{1}{2}$AC=$\frac{13}{2}$,
∴DF=DE+EF=9.
故選A.
點(diǎn)評(píng) 本題考查三角形中位線定理、等腰三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是靈活應(yīng)用三角形中位線定理,掌握等腰三角形的判定和性質(zhì).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{4}{3}$ | B. | 4 | C. | -4 | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com