分析 (1)通過全等三角形的判定定理SAS證得△DBE≌△ECF,由“全等三角形的對應(yīng)邊相等”推知DE=EF,所以△DEF是等腰三角形;
(2)由等腰△ABC的性質(zhì)求得∠B=∠C=$\frac{1}{2}$(180°-40°)=70°,所以根據(jù)三角形內(nèi)角和定理推知∠BDE+∠DEB=110°;再結(jié)合△DBE≌△ECF的對應(yīng)角相等:∠BDE=∠FEC,故∠FEC+∠DEB=110°,易求∠DEF=70°;
(3)由(2)知,∠DEF=∠B,于是得到∠B=60°,推出△ABC是等邊三角形,于是得到結(jié)論.
解答 (1)證明:∵AB=AC,
∴∠B=∠C.
∵AB=AD+BD,AB=AD+EC,
∴BD=EC.
在△DBE和△ECF中,
$\left\{\begin{array}{l}{BE=CF}\\{∠B=∠C}\\{BD=EC}\end{array}\right.$,
∴△DBE≌△ECF(SAS)
∴DE=EF,
∴△DEF是等腰三角形;
(2)解:∵∠A=40°,
∴∠B=∠C=$\frac{1}{2}$(180°-40°)=70°,
∴∠BDE+∠DEB=110°.
又∵△DBE≌△ECF,
∴∠BDE=∠FEC,
∴∠FEC+∠DEB=110°,
∴∠DEF=70°;
(3)解:當∠A=60°時,∠DEF=60°,
理由:由(2)知,∠DEF=∠B,
∵∠DEF=60°,
∴∠B=60°,
∵AB=AC,
∴△ABC是等邊三角形,
∴∠A=60°.
點評 本題考查了全等三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì).等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時,關(guān)鍵是選擇恰當?shù)呐卸l件.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2個 | B. | 3個 | C. | 4個 | D. | 0個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ∠BOC=60° | B. | ∠COA是∠EOD的余角 | ||
| C. | ∠AOC=∠BOD | D. | ∠AOD與∠COE互補 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5 | B. | 6 | C. | 7 | D. | 10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com