【題目】如圖1,已知
,
,點(diǎn)P為AB邊上的一個動點(diǎn),點(diǎn)E、F分別是CA,CB邊的中點(diǎn),過點(diǎn)P作
于D,設(shè)
,圖中某條線段的長為y,如果表示y與x的函數(shù)關(guān)系的大致圖象如圖2所示,那么這條線段可能是
![]()
![]()
A. PDB. PEC. PCD. PF
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣2=0.
(1)若該方程有兩個實(shí)數(shù)根,求m的最小整數(shù)值;
(2)若方程的兩個實(shí)數(shù)根為x1,x2,且(x1﹣x2)2+m2=21,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在
中,C、D分別為BM、AM上的點(diǎn),四邊形ABCD內(nèi)接于
,連接AC,
;
如圖
,求證:弧
弧BD;
如圖
,若AB為直徑,
,求
值;
如圖
,在
的條件下,E為弧CD上一點(diǎn)
不與C、D重合
,F為AB上一點(diǎn),連接EF交AC于點(diǎn)N,連接DN、DE,若
,
,
,求AN的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,其中從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.現(xiàn)以這組數(shù)中的各個數(shù)作為正方形的邊長值構(gòu)造正方形,再分別依次從左到右取2個、3個、4個、5個…正方形拼成如上長方形,若按此規(guī)律繼續(xù)作長方形,則序號為⑦的長方形周長是 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在研究“利用木板余料裁出最大面積的矩形”時發(fā)現(xiàn):如圖1,
是一塊直角三角形形狀的木板余料
,以
為內(nèi)角裁一個矩形當(dāng)DE,EF是中位線時,所裁矩形的面積最大
若木板余料的形狀改變,請你探究:
如圖2,現(xiàn)有一塊五邊形的木板余料ABCDE,
,
,
,
,
現(xiàn)從中裁出一個以
為內(nèi)角且面積最大的矩形,則該矩形的面積為______
.
如圖3,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測量
,
,
,且
,從中裁出頂點(diǎn)M,N在邊BC上且面積最大的矩形PQMN,則該矩形的面積為______
.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在
中,
,
,
,
于點(diǎn)D,將
繞點(diǎn)B順時針旋轉(zhuǎn)
得到![]()
如圖2,當(dāng)
時,求點(diǎn)C、E之間的距離;
在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)A、E、F三點(diǎn)共線時,求AF的長;
連結(jié)AF,記AF的中點(diǎn)為P,請直接寫出線段CP長度的最小值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l上有兩動點(diǎn)C、D,點(diǎn)A、點(diǎn)B在直線l同側(cè),且A點(diǎn)與B點(diǎn)分別到l的距離為a米和b米(即圖中AA′=a米,BB′=b米),且A′B′=c米,動點(diǎn)CD之間的距離總為S米,使C到A的距離與D到B的距離之和最小,則AC+BD的最小值為( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)荊州市“創(chuàng)建全國文明城市”號召,某單位不斷美化環(huán)境,擬在一塊矩形空地上修建綠色植物園,其中一邊靠墻,可利用的墻長不超過18m,另外三邊由36m長的柵欄圍成.設(shè)矩形ABCD空地中,垂直于墻的邊AB=xm,面積為ym2(如圖).
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)若矩形空地的面積為160m2,求x的值;
(3)若該單位用8600元購買了甲、乙、丙三種綠色植物共400棵(每種植物的單價和每棵栽種的合理用地面積如下表).問丙種植物最多可以購買多少棵?此時,這批植物可以全部栽種到這塊空地上嗎?請說明理由.
甲 | 乙 | 丙 | |
單價(元/棵) | 14 | 16 | 28 |
合理用地(m2/棵) | 0.4 | 1 | 0.4 |
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)P(﹣2,1)關(guān)于y軸的對稱點(diǎn)P′,點(diǎn)T(t,0)是x軸上的一個動點(diǎn),當(dāng)△P′TO是等腰三角形時,t的值是_____.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com