【題目】如圖,
為
的直徑,點(diǎn)
是
上一動(dòng)點(diǎn),過(guò)點(diǎn)
作
的切線,連接
并延長(zhǎng),交過(guò)點(diǎn)
的切線于點(diǎn)
,點(diǎn)
是
的中點(diǎn),連接
,
.
![]()
(1)求證:
是
切線;
(2)當(dāng)
_______度時(shí),四邊形
為正方形;
(3)連接
交
于點(diǎn)
,連接
,若
,
_______時(shí),四邊形
為菱形.
【答案】(1)見解析;(2)45;(3)4![]()
【解析】
(1)根據(jù)圓周角定理可得
,根據(jù)直角三角形的性質(zhì)得到
,
,根據(jù)
,得到
,
證明
.即可證明.
(2)當(dāng)
45度時(shí),首先證明四邊形
為矩形,根據(jù)有一組鄰邊相等的矩形是正方形即可證明.
(3)若四邊形
為菱形,則
是等邊三角形,根據(jù)三角函數(shù)即可求解.
(1)首先,連接
,
![]()
∵
是
的直徑,
∴
,
∵在
中,點(diǎn)
是
的中點(diǎn),
∴
,
∴
,
∵
,
∴
,
∴
,
即
.
又∵
是
的切線,
∴
,
∵點(diǎn)
在
上,
∴
是
的切線;
(2)當(dāng)
45度時(shí),
OA=OD,
四邊形
為矩形;
四邊形
為正方形;
(3)若四邊形
為菱形,則![]()
是等邊三角形,
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,點(diǎn)D是AC的中點(diǎn),連接BD,按以下步驟作圖:①分別以B,D為圓心,大于
BD的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)P和點(diǎn)Q;②作直線PQ交AB于點(diǎn)E,交BC于點(diǎn)F,則BF=( 。
![]()
A.
B. 1C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為5的⊙O中,弦AB=6,P是弦AB所對(duì)的優(yōu)弧上的動(dòng)點(diǎn),連接AP,過(guò)點(diǎn)A作AP的垂線交射線PB于點(diǎn)C,當(dāng)△PAB是等腰三角形時(shí),線段BC的長(zhǎng)為____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 拋物線
與
軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與
軸的交點(diǎn)在(0,2),(0,3)之間(包 含端點(diǎn)),則下列結(jié)論:①
;②
;③對(duì)于任意實(shí)數(shù)m,
總成立;④關(guān)于
的方程
有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為
![]()
![]()
A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,如表是函數(shù)的幾組對(duì)應(yīng)值:
x |
|
|
|
|
|
| 0 | 1 | 2 | 3 |
| 4 |
|
y |
|
|
|
|
|
| 0 |
|
|
|
|
|
|
請(qǐng)你根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用表格所反映出的y與x之間的變化規(guī)律,對(duì)該函數(shù)的圖象與性質(zhì)進(jìn)行探究
下面是小騰的探究過(guò)程,請(qǐng)補(bǔ)充完整.
如圖所示,在平面直角坐標(biāo)系xOy中,描出了上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn)
根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象
根據(jù)函數(shù)圖象,按要求填空:
在y軸左側(cè)該函數(shù)圖象有最______點(diǎn),其坐標(biāo)為______.
當(dāng)
時(shí),該函數(shù)y隨x的增大而______.
當(dāng)方程
只有一個(gè)解時(shí),則a的取值范圍為______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=-x+4與雙曲線y=
(x>0)只有一個(gè)交點(diǎn),將直線y=-x+4向上平移1個(gè)單位后與雙曲線y=
(x>0)相交于A,B兩點(diǎn),如圖,求A,B兩點(diǎn)坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校準(zhǔn)備購(gòu)進(jìn)一批A、B兩型號(hào)節(jié)能燈,已知2只A型節(jié)能燈和3只B型節(jié)能燈共需31元;1只A型節(jié)能燈和2只B型節(jié)能燈共需19元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價(jià)各是多少元?
(2)學(xué)校準(zhǔn)備購(gòu)進(jìn)這兩種型號(hào)的節(jié)能燈共100只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的2倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購(gòu)買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 已知:Rt△EFP和矩形ABCD如圖①擺放(點(diǎn)P與點(diǎn)B重合),點(diǎn)F,B(P),C在同一條直線上,AB=EF=6cm,BC=FP=8cm,∠EFP=90°。如圖②,△EFP從圖①的位置出發(fā),沿BC方向勻速運(yùn)動(dòng),速度為1cm/s;EP與AB交于點(diǎn)G.同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿CD方向勻速運(yùn)動(dòng),速度為1cm/s。過(guò)Q作QM⊥BD,垂足為H,交AD于M,連接AF,PQ,當(dāng)點(diǎn)Q停止運(yùn)動(dòng)時(shí),△EFP也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<6),解答下列問(wèn)題:
(1)當(dāng) t 為何值時(shí),PQ∥BD?
(2)設(shè)五邊形 AFPQM 的面積為 y(cm2),求 y 與 t 之間的函數(shù)關(guān)系式;
(3)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻 t,使
?若存在,求出 t 的值;若不存在,請(qǐng)說(shuō)明理由;
(4)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻 t,使點(diǎn)M在PG的垂直平分線上?若存在,求出 t 的值;若不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知梯形ABCD中,AD//BC ,∠ABC=90°,BC=2AB=8,對(duì)角線AC平分∠BCD,過(guò)點(diǎn)D作DE⊥AC,垂足為點(diǎn)E,交邊AB的延長(zhǎng)線于點(diǎn)F,聯(lián)結(jié)CF.
(1)求腰DC的長(zhǎng);
(2)求∠BCF的余弦值.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com