【題目】如圖,在平面直角坐標(biāo)系中,四邊形OBCD是邊長為4的正方形,平行于對角線BD的直線l從O出發(fā),沿x軸正方向以每秒1個單位長度的速度運(yùn)動,運(yùn)動到直線l與正方形沒有交點(diǎn)為止.設(shè)直線l掃過正方形OBCD的面積為S,直線l運(yùn)動的時間為t(秒),下列能反映S與t之間函數(shù)關(guān)系的圖象是( )
![]()
![]()
A. A B. B C. C D. D
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:y=2x+4交x軸于A,交y軸于B.
![]()
(1) 直接寫出直線l向右平移2個單位得到的直線l1的解析式_______;
(2) 直接寫出直線l關(guān)于y=-x對稱的直線l2的解析式_______;
(3) 點(diǎn)P在直線l上,若S△OAP=2S△OBP,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蝸牛從某點(diǎn)O開始沿東西方向直線爬行,規(guī)定向東爬行的路程記為正數(shù),向西爬行的路程記為負(fù)數(shù).爬行的各段路程依次為(單位:厘米):
.問:
(1)蝸牛最后是否回到出發(fā)點(diǎn)O?
(2)蝸牛離開出發(fā)點(diǎn)O最遠(yuǎn)是多少厘米?
(3)在爬行過程中,如果每爬行1厘米獎勵一粒芝麻,則蝸牛可得到多少粒芝麻?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+8(a≠0)的圖象與x軸交于點(diǎn)A(﹣2,0),
B(4,0)與y軸交于點(diǎn)C.
(Ⅰ)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(Ⅱ)求△BCD的面積;
(Ⅲ)若直線CD交x軸與點(diǎn)E,過點(diǎn)B作x軸的垂線,交直線CD與點(diǎn)F,將拋物線沿其對稱軸向上平移,使拋物線與線段EF總有公共點(diǎn).試探究拋物線最多可以向上平移多少個單位長度(直接寫出結(jié)果,不寫求解過程).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一動點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.以下五個結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的結(jié)論有 .(把你認(rèn)為正確的序號都填上)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把幾個圖形拼成一個新的圖形,再通過兩種不同的方法計算同一個圖形的面積,可以得到一個等式,也可以求出一些不規(guī)則圖形的面積.
例如,由圖1,可得等式:(a+2b)(a+b)=a2+3ab+2b2
(1)如圖2,將幾個面積不等的小正方形與小長方形拼成一個邊長為a+b+c的正方形,試用不同的形式表示這個大正方形的面積,你能發(fā)現(xiàn)什么結(jié)論?請用等式表示出來.
![]()
(2)利用(1)中所得到的結(jié)論,解決下面的問題: 已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.
(3)如圖3,將兩個邊長分別為a和b的正方形拼在一起,B,C,G三點(diǎn)在同一直線上,連接BD和BF.若這兩個正方形的邊長滿足a+b=10,ab=20,請求出陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有三個點(diǎn)A、B、C,它們可以沿著數(shù)軸左右移動,請回答:
![]()
(1)將點(diǎn)B向右移動三個單位長度后到達(dá)點(diǎn)D,點(diǎn)D表示的數(shù)是 ;
(2)移動點(diǎn)A到達(dá)點(diǎn)E,使B、C、E三點(diǎn)的其中任意一點(diǎn)為連接另外兩點(diǎn)之間線段的中點(diǎn),請你直接寫出所有點(diǎn)A移動的距離和方向;
(3)若A、B、C三個點(diǎn)移動后得到三個互不相等的有理數(shù),它們既可以表示為1,
,
的形式,又可以表示為0,
,
的形式,試求
,
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+(2m+1)x+m2+2=0有兩個不相等的實(shí)數(shù)根,試判斷直線y=(2m-3)x-4m+7能否經(jīng)過點(diǎn)A(-2,4),并說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com