【題目】如圖,點(diǎn)
,
分別在反比例函數(shù)![]()
,![]()
的圖象上.若
,
,則
的值為( )
![]()
A.
B.
C.
D.![]()
【答案】A
【解析】
分別過(guò)點(diǎn)A作AC⊥x軸于C,過(guò)點(diǎn)B作BD⊥x軸于D,根據(jù)點(diǎn)A所在的圖象可設(shè)點(diǎn)A的坐標(biāo)為(
),根據(jù)相似三角形的判定證出△BDO∽△OCA,列出比例式即可求出點(diǎn)B的坐標(biāo),然后代入
中即可求出
的值.
解:分別過(guò)點(diǎn)A作AC⊥x軸于C,過(guò)點(diǎn)B作BD⊥x軸于D,
![]()
∵點(diǎn)
在反比例函數(shù)![]()
,
設(shè)點(diǎn)A的坐標(biāo)為(
),則OC=x,AC=
,
∴∠BDO=∠OCA=90°
∵![]()
∴∠BOD+∠AOC=180°-∠AOB=90°,∠OAC+∠AOC=90°
∴∠BOD=∠OAC
∴△BDO∽△OCA
∴![]()
解得:OD=2AC=
,BD=2OC=2x,
∵點(diǎn)B在第二象限
∴點(diǎn)B的坐標(biāo)為(
)
將點(diǎn)B坐標(biāo)代入
中,解得![]()
故選A.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)用配方法解方程:x2-2x-2=0;(2)已知關(guān)于x的方程(m-2)x2+(m-2)x-1=0有兩個(gè)相等的實(shí)數(shù)根,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將矩形ABCD沿AF折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,過(guò)點(diǎn)E作EG∥CD交AF于點(diǎn)G,連接DG.
![]()
(1)求證:四邊形EFDG是菱形;
(2)求證:EG2=
GF×AF;
(3)若
,折痕AF=5
cm,則矩形ABCD的周長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,并解決問(wèn)題:
材料1:對(duì)于一個(gè)三位數(shù)其十位數(shù)字等于個(gè)位數(shù)字與百位數(shù)字的差的兩倍,則我們稱這樣的數(shù)為“倍差數(shù)”如122,
;
材料2:若一個(gè)數(shù)
能夠?qū)懗?/span>
均為正整數(shù),且
,則我們稱這樣的數(shù)為“不完全平方差數(shù)”,
最大時(shí),我們稱此時(shí)的
、
為
的一組“最優(yōu)分解數(shù)”,井規(guī)定
.例如
,因?yàn)椋?/span>
,
,
,所以
;
(1)求證:任意的一個(gè)“倍差數(shù)”與其百位數(shù)字之和能夠被3整除;
(2)若一個(gè)小于300的三位數(shù)
其中
,
,且
均為整數(shù))既是一個(gè)“不完全平方差數(shù)”,也是一個(gè)“倍差數(shù)”,求所有
的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△OAB中,OA=OB,⊙O經(jīng)過(guò)AB的中點(diǎn)C,與OB交于點(diǎn)D,且與BO的延長(zhǎng)線交于點(diǎn)E,連接EC,CD.
(1)試判斷AB與⊙O的位置關(guān)系,并加以證明;
(2)若tanE=
,⊙O的半徑為3,求OA的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進(jìn)行了抽樣調(diào)查.該部門隨機(jī)抽取了30名工人某天每人加工零件的個(gè)數(shù),數(shù)據(jù)如下:
20 | 21 | 19 | 16 | 27 | 18 | 31 | 29 | 21 | 22 |
25 | 20 | 19 | 22 | 35 | 33 | 19 | 17 | 18 | 29 |
18 | 35 | 22 | 15 | 18 | 18 | 31 | 31 | 19 | 22 |
整理上面數(shù)據(jù),得到條形統(tǒng)計(jì)圖:
![]()
樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:
統(tǒng)計(jì)量 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
數(shù)值 | 23 | m | 21 |
根據(jù)以上信息,解答下列問(wèn)題:
(1)上表中眾數(shù)m的值為 ;
(2)為調(diào)動(dòng)工人的積極性,該部門根據(jù)工人每天加工零件的個(gè)數(shù)制定了獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡達(dá)到或超過(guò)這個(gè)標(biāo)準(zhǔn)的工人將獲得獎(jiǎng)勵(lì).如果想讓一半左右的工人能獲獎(jiǎng),應(yīng)根據(jù) 來(lái)確定獎(jiǎng)勵(lì)標(biāo)準(zhǔn)比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”)
(3)該部門規(guī)定:每天加工零件的個(gè)數(shù)達(dá)到或超過(guò)25個(gè)的工人為生產(chǎn)能手.若該部門有300名工人,試估計(jì)該部門生產(chǎn)能手的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)教育系統(tǒng)為了更好地宣傳掃黑除惡專項(xiàng)斗爭(zhēng),印制了應(yīng)知應(yīng)會(huì)手冊(cè),該區(qū)教育局想了解教師對(duì)掃黑除惡專項(xiàng)斗爭(zhēng)應(yīng)知應(yīng)會(huì)知識(shí)掌握程度,抽取了部分教師進(jìn)行了測(cè)試,并將測(cè)試成績(jī)繪制成下面兩幅統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中提供的信息,回答下面問(wèn)題:
![]()
(1)計(jì)算樣本中,成績(jī)?yōu)?/span>98分的教師有 人,并補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;
(2)樣本中,測(cè)試成績(jī)的眾數(shù)是 ,中位數(shù)是 ;
(3)若該區(qū)共有教師6880名,根據(jù)此次成績(jī)估計(jì)該區(qū)大約有多少名教師已全部掌握掃黑除惡專項(xiàng)斗爭(zhēng)應(yīng)知應(yīng)會(huì)知識(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線
與
軸交于點(diǎn)
,與
軸交于點(diǎn)
,點(diǎn)
在
軸正半軸上,
.
![]()
(1)求直線
的解析式;
(2)點(diǎn)
是射線
上一點(diǎn),連接
,設(shè)點(diǎn)
的橫坐標(biāo)為
,
的面積為![]()
,求
與
的函數(shù)解析式,并直接寫出自變量
的取值范圍;
(3)在(2)的條件下,
與
軸交于點(diǎn)
,連接
,過(guò)點(diǎn)
作
的垂線,垂足為點(diǎn)
,直線
交
軸于點(diǎn)
,交線段
于點(diǎn)
,直線
交
軸于點(diǎn)
,當(dāng)
時(shí),求直線
的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠ACB=45°,D為AC上一點(diǎn),AD=5
,連接BD,將△ABD沿BD翻折至△EBD,點(diǎn)A的對(duì)應(yīng)點(diǎn)E點(diǎn)恰好落在邊BC上.延長(zhǎng)BC至點(diǎn)F,連接DF,若CF=2,tan∠ABD=
,則DF長(zhǎng)為( )
![]()
A.
B.
C.5
D.7![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com