分析 (1)先根據(jù)圓周角定理得出∠BAD=∠BCD,再由直角三角形的性質(zhì)得出∠ANE=∠CNM,故可得出∠BCD=∠BAM,由全等三角形的判定定理得出△ANE≌△ADE,故可得出結(jié)論;
(2)先根據(jù)垂徑定理求出AE的長,設(shè)NE=x,則OE=x-1,NE=ED=x,r=OD=OE+ED=2x-1,連結(jié)AO,則AO=OD=2x-1,在Rt△AOE中根據(jù)勾股定理可得出x的值,進而得出結(jié)論;
(3)根據(jù)線段垂直平分線的判定得到AE平分ND,于是得到S△AEN=S△ADE通過△CMN∽△AEN,即可得到結(jié)論.
解答 (1)證明:∵∠BAD與∠BCD是同弧所對的圓周角,
∴∠BAD=∠BCD,
∵AE⊥CD,AM⊥BC,
∴∠AMC=∠AEN=90°,
∵∠ANE=∠CNM,
∴∠BCD=∠BAM,
∴∠BAM=BAD,
在△ANE與△ADE中,
$\left\{\begin{array}{l}{∠BAM=∠BAD}\\{AE=AE}\\{∠AEN=∠AED}\end{array}\right.$,
∴△ANE≌△ADE,
∴AD=AN;
(2)解:∵AB=4$\sqrt{2}$,AE⊥CD,∴AE=2$\sqrt{2}$,
又∵ON=1,
∴設(shè)NE=x,則OE=x-1,NE=ED=x,
r=OD=OE+ED=2x-1
連結(jié)AO,則AO=OD=2x-1,
∵△AOE是直角三角形,AE=2$\sqrt{2}$,OE=x-1,AO=2x-1,
∴(2$\sqrt{2}$)2+(x-1)2=(2x-1)2,
解得x=2,
∴r=2x-1=3;
(3)解:∵AD=AN,AB⊥CD,
∴AE平分ND,
∴S△AEN=S△ADE
∵S△CMN:S△AND=1:8,
∴S△CMN:S△AEN=1:4,
又∵△CMN∽△AEN,
∴($\frac{CM}{AE}$)2=$\frac{1}{4}$,
∵AE=4,
∴CM=2.
點評 本題考查的是垂徑定理,相似三角形的判定和性質(zhì),勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com