分析 (1)證△CFG≌△EDG,推出FG=EG,根據(jù)平行四邊形的判定推出即可;
(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根據(jù)矩形的判定推出即可;
②求出△CDE是等邊三角形,推出CE=DE,根據(jù)菱形的判定推出即可.
解答 解:(1)四邊形ABCD是平行四邊形,
∴CF∥ED,
∴∠FCD=∠GCD,
又∠CGF=∠EGD.
G是CD的中點(diǎn),
CG=DG,
在△FCG和△EDG中,
∵$\left\{\begin{array}{l}{∠FCG=∠EDG}\\{CG=DG}\\{∠CGF=∠DGE}\end{array}\right.$,
∴△CFG≌△EDG(ASA),
∴FG=EG,
∵CG=DG,
∴四邊形CEDF是平行四邊形;
(2)①當(dāng)AE=3.5時,平行四邊形CEDF是矩形,![]()
理由是:過A作AM⊥BC于M,
∵∠B=60°,AB=3,
∴BM=1.5,
∵四邊形ABCD是平行四邊形,
∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,
∵AE=3.5,
∴DE=1.5=BM,
在△MBA和△EDC中,
∵$\left\{\begin{array}{l}{BM=DE}\\{∠B=∠CDA}\\{AB=CD}\end{array}\right.$,
∴△MBA≌△EDC(SAS),
∴∠CED=∠AMB=90°,
∵四邊形CEDF是平行四邊形,
∴四邊形CEDF是矩形;
②當(dāng)AE=2時,四邊形CEDF是菱形,
理由是:∵AD=5,AE=2,
∴DE=3,
∵CD=3,∠CDE=60°,
∴△CDE是等邊三角形,
∴CE=DE,
∵四邊形CEDF是平行四邊形,
∴四邊形CEDF是菱形.
點(diǎn)評 本題考查了平行四邊形的性質(zhì)和判定,菱形的判定,矩形的判定,等邊三角形的性質(zhì)和判定,全等三角形的性質(zhì)和判定的應(yīng)用,注意:有一組鄰邊相等的平行四邊形是菱形,有一個角是直角的平行四邊形是矩形.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 三邊之比為1:$\sqrt{2}$:$\sqrt{3}$ | B. | 三邊長依次為9,40,41 | ||
| C. | 三內(nèi)角之比為3:4:5 | D. | 三內(nèi)角之比為1:1:2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-a+b)(-a-b)=a2-b2 | B. | (-a-b)2=a2+b2+2ab | C. | (-a+b)2=a2+b2-2ab | D. | (-a-b)(a+b)=a2-b2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①② | B. | ②④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com