分析 此題分情況考慮:當(dāng)三角形的外心在三角形的內(nèi)部時(shí),根據(jù)勾股定理求得BD的長(zhǎng),再根據(jù)勾股定理求得AB的長(zhǎng);當(dāng)三角形的外心在三角形的外部時(shí),根據(jù)勾股定理求得BD的長(zhǎng),再根據(jù)勾股定理求得AB的長(zhǎng).
解答 解:如圖1,當(dāng)三角形的外心在三角形的內(nèi)部時(shí),![]()
連接AO并延長(zhǎng)到BC于點(diǎn)D,
∵AB=AC,O為外心,
∴AD⊥BC,
在直角三角形BOD中,根據(jù)勾股定理,得BD=4,
在直角三角形ABD中,根據(jù)勾股定理,得AB=$\sqrt{{4}^{2}+{8}^{2}}$=4$\sqrt{5}$(cm);
當(dāng)三角形的外心在三角形的外部時(shí),如圖2,
在直角三角形BOD中,根據(jù)勾股定理,得BD=4,
在直角三角形ABD中,根據(jù)勾股定理,得AB=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$(cm).
即AB的長(zhǎng)是4$\sqrt{5}$cm或2$\sqrt{5}$cm.
點(diǎn)評(píng) 本題考查了勾股定理的運(yùn)用,能求出符合條件的所有情況時(shí)解此題的關(guān)鍵,注意:三角形的外心可能在三角形的外部,可能在三角形的內(nèi)部,也可能在三角形的一邊上,即直角三角形的外心在其斜邊的中點(diǎn).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 22或23 | B. | 23或24 | C. | 24或25 | D. | 25或26 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 100° | B. | 105° | C. | 90° | D. | 60° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | 無(wú)法確定 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com