分析 易得△AHF∽△CGE,所以$\frac{AF}{CE}$=$\frac{FH}{EG}$=$\frac{FO}{OE}$,由EC=2得AF=1,過F作FP⊥BC于P,根據(jù)勾股定理得EF=2$\sqrt{17}$,因?yàn)镕H∥EG,所以$\frac{FO}{OE}$=$\frac{HO}{HG}$,知EF=GH,所以FO=HO,再求得△FOH與三角形△的面積相加即可.
解答 解:將FE平移到AM處,則AM∥EF,AM=EF.
將GH平移到DN處,則DN∥GH,DN=GH.![]()
∵EF⊥GH,
∴AM⊥DN,
在△ABM與△DAN中,
$\left\{\begin{array}{l}{BAM=∠ADN}\\{AB=DA}\\{∠ABM=∠DAN}\end{array}\right.$,
∴△ABM≌△DAN(ASA),
則AM=DN,
∴EF=GH;
∵四邊形ABCD是正方形,
∴AB∥CD
∴∠AHO=∠CGO
∵FH∥EG
∴∠FHO=∠EGO
∴∠AHF=∠CGE
∴△AHF∽△CGE
∴$\frac{AF}{CE}$=$\frac{FH}{EG}$=$\frac{FO}{OE}$,
∵EC=4
∴AF=2
過F作FP⊥BC于P,![]()
根據(jù)勾股定理得EF=2$\sqrt{17}$,
∵FH∥EG,
∴$\frac{FO}{OE}$=$\frac{HO}{HG}$,
∵EF=GH,
∴FO=HO.
∴S△FOH=$\frac{1}{2}$FO2=$\frac{1}{2}$×($\frac{1}{3}$EF)2,S△EOG=$\frac{1}{2}$×($\frac{2}{3}$EF)2,
∴陰影部分面積為$\frac{170}{9}$.
故答案是:$\frac{170}{9}$.
點(diǎn)評(píng) 本題考查了三角形的綜合知識(shí).用到全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理等綜合性較強(qiáng),難度較大.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com