分析 (1)根據(jù)∠1=∠C及圓周角定理可得出∠1=∠P,由此可得出結(jié)論;
(2)連接AC,根據(jù)圓周角定理得出∠ACB=90°,再由垂徑定理得出$\widehat{BC}$=$\widehat{BD}$,故可得出∠P=∠CAB,根據(jù)銳角三角函數(shù)的定義即可得出結(jié)論.
解答
(1)證明:∵∠1=∠C,∠C=∠P,
∴∠1=∠P,
∴CB∥PD.
(2)解:連接AC,
∵AB是⊙O的直徑,
∴∠ACB=90°.
∵CD⊥AB,
∴$\widehat{BC}$=$\widehat{BD}$,
∴∠P=∠CAB,
∴sin∠CAB=$\frac{BC}{AB}$=$\frac{2}{5}$.
∵BC=6,
∴AB=15.
點(diǎn)評(píng) 本題考查的是圓周角定理,根據(jù)題意作出輔助線,構(gòu)造出圓周角是解答此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x>-$\frac{2}{3}$ | B. | x<-$\frac{2}{3}$ | C. | x>-$\frac{3}{2}$ | D. | x<-$\frac{3}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 100° | B. | 120° | C. | 140° | D. | 160° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | OE是∠AOB的平分線 | B. | OC=OD | ||
| C. | 點(diǎn)C、D到OE的距離不相等 | D. | ∠AOE=∠BOE |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ①②③ | B. | ②③④ | C. | ①③④ | D. | ①②④ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com