分析 由等邊三角形的性質(zhì)可知∠A=∠B=60°,DF=DE,且∠FDE=60°,所以可得出∠AFD=∠BDE,從而可證得△ADF≌△BED,同理可證得其它三角形全等,利用全等三角形的性質(zhì)證得結(jié)論.
解答 證明:∵△ABC,△DEF是等邊三角形,
∴∠A=∠B=60°,DF=DE,且∠FDE=60°,
∴∠BAD+∠ADF=∠ADF+∠AFD=120°,
∴∠AFD=∠BDE,
在△ADF和△BED中,
$\left\{\begin{array}{l}{∠A=∠B}\\{∠AFD=∠BDE}\\{DE=DF}\end{array}\right.$,
∴△ADF≌△BED(AAS),
同理可得:△ADF≌△CFE,
∴△ADF≌△CFE≌△BED;
∴AD=BE=CF.
點評 此題考查了等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì).此題難度適中,熟練掌握全等三角形的判定和性質(zhì)是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 55 (1+x)2=35 | B. | 35(1+x)2=55 | C. | 55(1-x)2=35 | D. | 35(1-x)2=55 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com