【題目】如圖①,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)請(qǐng)直接寫出線段AF,AE的數(shù)量關(guān)系;
(2)①將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),如圖②,連接AE,請(qǐng)判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;
②若AB=2
,CE=2,在圖②的基礎(chǔ)上將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn)一周的過程中,當(dāng)平行四邊形ABFD為菱形時(shí),直接寫出線段AE的長(zhǎng)度.
![]()
【答案】(1)AF=
(2)結(jié)論:AF=
(3)4
或2![]()
【解析】試題(1)如圖①中,只要證明△AEF是等腰直角三角形即可得到結(jié)論AF=
AE;
(2)如圖②中,連接EF,DF交BC于K,先證明△EKF≌△EDA,再證明△AEF是等腰三角形即可;
(3)如圖③中,連接EF,延長(zhǎng)FD交AC于K,先證明△EDF≌△ECA,再證明△AEF是等腰直角三角形即可.
試題解析:(1)AF= ![]()
如圖2,結(jié)論:AF= ![]()
![]()
理由:連接EF,DF交BC于K,
∵四邊形ABFD是平行四邊形,∴AB∥DF,∴∠DKE=∠ABC=45°
∴∠EKF=180°=∠DKE=135°,
∵∠ADE=180°-∠EDC=180°-45°=135°,∴∠EKF=∠ADE,
∵∠DKG=∠C,∴DK=DC,
∵DF=AB=AC,∴KF=AD,
在△EKF和△EDA中,
∴△EKF≌△EDA
∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,
∴AF=
AE
(3)4
或2![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在解方程
時(shí)運(yùn)用了下面的方法:由
,又由
可得
,將這兩式相加可得
,將
兩邊平方可解得
=-1,經(jīng)檢驗(yàn)
=-1是原方程的解.
請(qǐng)你參考小明的方法,解下列方程:
(1)![]()
(2)
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)選項(xiàng)中,不是y關(guān)于x的函數(shù)的是( )
A.|y|=x﹣1 B.y=
C.y=2x﹣7 D.y=x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點(diǎn)A(2,0)的兩條直線l1、l2分別交y軸于點(diǎn)B、C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=
.
(1)求點(diǎn)B的坐標(biāo);
(2)若OC:OB=1:3,求直線l2的解析式.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)幾何體的三視圖.
(1)寫出該幾何體的名稱,并根據(jù)所示數(shù)據(jù)計(jì)算這個(gè)幾何體的表面積;
(2)如果一只螞蟻要從這個(gè)幾何體中的點(diǎn)B出發(fā),沿表面爬到AC的中點(diǎn)D,請(qǐng)你求出這個(gè)線路的最短路程.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知AB=5,BC=8,AC=7,動(dòng)點(diǎn)P、Q分別在邊AB、AC上,使△APQ的外接圓與BC相切,則線段PQ的最小值等于_______________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知射線OC上的任意一點(diǎn)到∠AOB的兩邊的距離都相等,點(diǎn)D、E、F分別為邊OC、OA、OB上,如果要想證得OE=OF,只需要添加以下四個(gè)條件中的某一個(gè)即可,請(qǐng)寫出所有可能的條件的序號(hào)__________.
①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線
與
軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)B的坐標(biāo)為(3,0),與
軸交于點(diǎn)C(0,-3),頂點(diǎn)為D.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo).
(2)聯(lián)結(jié)AC,BC,求∠ACB的正切值.
(3)點(diǎn)P是x軸上一點(diǎn),是否存在點(diǎn)P使得△PBD與△CAB相似,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(4)M是拋物線上一點(diǎn),點(diǎn)N在
軸,是否存在點(diǎn)N,使得以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是邊長(zhǎng)為4的正方形,點(diǎn)P是平面內(nèi)一點(diǎn).且滿足BP⊥PC,現(xiàn)將點(diǎn)P繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90度,則CQ的最大值=_____.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com