分析 在矩形ABCD中求出對角線AC的長度,然后表示出CQ、PC的長度,過點P作PH⊥BC于點H,然后在Rt△PHC中表示出PH的長度,根據面積為3.6cm2,列方程求解.
解答 解:在矩形ABCD中,
∵AB=6cm,BC=8cm,
∴AC=10cm,AP=2tcm,PC=(10-2t)cm,
CQ=tcm,
過點P作PH⊥BC于點H,
則PH=$\frac{3}{5}$(10-2t)cm,
根據題意,得 $\frac{1}{2}$t•$\frac{3}{5}$(10-2t)=3.6,
解得:t1=2,t2=3.
答:△CQP的面積等于3.6cm2時,t的值為2或3.
點評 本題考查了一元二次方程的應用,解答本題的關鍵是讀懂題意,表示出CQ、PC的長度,求出三角形的面積,然后解方程.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com