分析 (1)直接利用勾股定理得出AD的長(zhǎng),進(jìn)而得出△ACD的形狀;
(2)利用勾股定理得出AB的長(zhǎng),進(jìn)而得出BD的長(zhǎng).
解答 解:(1)由題意可得:AC=6m,DC=6$\sqrt{2}$m,∠CAD=90°,
可得AD=$\sqrt{C{D}^{2}-A{C}^{2}}$=6(m),
故△ACD是等腰直角三角形;
(2)∵AC=6m,BC=10m,∠CAD=90°,
∴AB=$\sqrt{B{C}^{2}-A{C}^{2}}$=8(m),
則BD=AB-AD=8-6=2(m).
答:船體移動(dòng)距離BD的長(zhǎng)度為2m.
點(diǎn)評(píng) 此題主要考查了勾股定理的應(yīng)用,根據(jù)題意正確應(yīng)用勾股定理是解題關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | msin40° | B. | mtan40° | C. | mcos40° | D. | $\frac{m}{{tan{{40}°}}}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com