| A. | 2:1 | B. | 2:3 | C. | 4:9 | D. | 5:4 |
分析 由DE∥BC,得到△DOE∽△COB,根據(jù)相似三角形的性質(zhì)得到S△DOE:S△COB=($\frac{DE}{BC}$)2=4:9,求得$\frac{DE}{BC}$=$\frac{2}{3}$,通過△ADE∽△ABC,得到$\frac{AE}{AC}=\frac{DE}{BC}$=$\frac{2}{3}$,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
解答 解:∵DE∥BC,
∴△DOE∽△COB,
∴S△DOE:S△COB=($\frac{DE}{BC}$)2=4:9,
∴$\frac{DE}{BC}$=$\frac{2}{3}$,
∵DE∥BC,
∴△ADE∽△ABC,
∴$\frac{AE}{AC}=\frac{DE}{BC}$=$\frac{2}{3}$,
∴AE:EC=2:1,
故選A.
點(diǎn)評 本題考查了相似三角形的判定和性質(zhì),證得$\frac{DE}{BC}$=$\frac{2}{3}$是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{1}{2}$x2y與xy2 | B. | 3x2y與-4x2yz | C. | -3xy3與zy3 | D. | x2y與-3yx2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{5}{2}$cm | B. | $\frac{5}{4}$cm | C. | $\frac{3}{2}$cm | D. | $\frac{1}{4}$cm |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com