分析 (1)利用平行線的性質(zhì)得出∠DEN=∠BCM,∠END=∠CMB,即可得出結(jié)論,
(2)先判斷出BM=2DN,再取BF、BM的中點H、Q,連接HQ、AQ,則HQ是三角形的中位線,所以MF=2QH,根據(jù)BF=2AF,得出AF=HF,得出PF是△AQH的中位線,得出QH=2PF,MF=2QH=4PF,PM=3PF,同理:求得DM=PM=3PF,即可求得$\frac{DM}{MF}$的值;
(3)連接BD,作BH⊥DN于H,先求得$\frac{{S}_{△BDM}}{{S}_{△BMF}}=\frac{3}{4}$,得出S△BMF=$\frac{4}{3}$S△BDM,進(jìn)而得出$\frac{{S}_{△BDN}}{{S}_{△BDM}}=\frac{\frac{1}{2}DN•BH}{\frac{1}{2}BM•BH}$=$\frac{DN}{BM}=\frac{1}{2}$,得出S△BDM=2S△BDN,從而得出S梯形BMDN=S△BDN+S△BDM=3S△BDN,即可求得$\frac{{S}_{△BFM}}{{S}_{四邊形BMDN}}$的值,
解答 (1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DEN=∠BCM,
又∵BM∥DN,
∴∠END=∠CMB,
∴△EDN∽△CBM,
﹙2﹚∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∴DE=$\frac{1}{2}$CB,
由(1)知,△EDN∽△CBM,
∴$\frac{DE}{BC}=\frac{DN}{BM}=\frac{1}{2}$,
∴BM=2DN;
如圖2,
取BF、BM的中點H、Q,連接HQ、AQ,
∵BQ=MQ,BH=HF,
∴QH∥DF,
∴MF=2QH,
∵BF=2AF,
∴AF=HF,
∴PF是△AQH的中位線,
∴QH=2PF,
∴MF=2QH=4PF,
∴PM=3PF,
同理:EM是△ADP的中位線,
∴DM=PM=3PF,
∴$\frac{DM}{MF}=\frac{3PF}{4PF}=\frac{3}{4}$.
(3)如圖3,連接BD,作BH⊥DN于H,![]()
∵BM∥DN,
∴BH⊥BM,
∵$\frac{DM}{MF}=\frac{3}{4}$,
∴$\frac{{S}_{△BDM}}{{S}_{△BMF}}=\frac{3}{4}$,
∴S△BMF=$\frac{4}{3}$S△BDM,
∵BM∥DN,
∴$\frac{{S}_{△BDN}}{{S}_{△BDM}}=\frac{\frac{1}{2}DN•BH}{\frac{1}{2}BM•BH}$=$\frac{DN}{BM}=\frac{1}{2}$,
∴S△BDM=2S△BDN,
∴S梯形BMDN=S△BDN+S△BDM=3S△BDN,
∴S△BMF=$\frac{4}{3}$S△BDM=$\frac{8}{3}$S△BDN,
∴$\frac{{S}_{△BFM}}{{S}_{四邊形BMDN}}$=$\frac{\frac{8}{3}{S}_{△BDN}}{3{S}_{△BDN}}$=$\frac{8}{9}$.
點評 此題是相似三角形的綜合題,主要考查了平行四邊形的性質(zhì),三角形的中位線定理,三角形相似的判定和性質(zhì),以及三角形的面積等,解(2)的關(guān)鍵是判斷出BM=2DN,解(3)的關(guān)鍵是S△BMF=$\frac{4}{3}$S△BDM,是一道中等難度的中考?碱}.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 20° | B. | 25° | C. | 30° | D. | 35° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 13,13 | B. | 14,10 | C. | 14,13 | D. | 13,14 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 100 | B. | 110 | C. | 120 | D. | 130 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 中位數(shù) | B. | 眾數(shù) | C. | 方差 | D. | 平均數(shù) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com