分析 由SAS證明△OBC≌△OAD,得出對應角相等∠OCB=∠ODA=35°,由三角形的外角性質求出∠CAE,再由三角形的外角性質求出∠CED即可.
解答 解:∵OA=OB,AC=BD,
∴OA+AC=OB+BD,
即OC=OD,
在△OBC和△OAD中,
$\left\{\begin{array}{l}{OB=OA}&{\;}\\{∠O=∠O}&{\;}\\{OC=OD}&{\;}\end{array}\right.$,
∴△OBC≌△OAD(SAS),
∴∠OCB=∠ODA=35°,
又∵∠CAE=∠O+∠ODA=50°+35°=85°,
∴∠CED=∠CAE+∠OCB=85°+35°=120°.
故答案為:35°,120°.
點評 本題考查了全等三角形的判定與性質、三角形的外角性質;熟練掌握全等三角形的判定與性質,并能進行推理論證與計算是解決問題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com