分析 (1)如圖1中,由△BDF≌△ADC,可得DF=DC=3,在Rt△BDF中,BD=$\sqrt{B{F}^{2}-D{F}^{2}}$=4,可得AB=$\sqrt{2}$BD=4$\sqrt{2}$;
(2)(2)①由△AOG≌△FOB,推出$\frac{OG}{OB}$=$\frac{OA}{OF}$,推出$\frac{OG}{OA}$=$\frac{OB}{OF}$,又∠BOG=∠AOF,推出△BOG∽△FOA,可得∠BGO=∠OAF=45°;
②如圖2中,在AB上截取AM=AG,則∠MGA=∠BGF=45°,推出∠BCM=∠FCA,由BC=$\sqrt{2}$FG,GM=$\sqrt{2}$AC,可得$\frac{BG}{GF}$=$\frac{GM}{GA}$=$\sqrt{2}$,推出△BGM∽△FGA,可得$\frac{BM}{AF}$=$\frac{BG}{GF}$=$\sqrt{2}$,推出BM=$\sqrt{2}$AF,由此即可解決問題;
解答 (1)解:如圖1中,![]()
∵∠ABC=45°,AD⊥BC,
∴∠ADB=90°,△ADB是等腰直角三角形,
∴AD=BD,
∵BE⊥AC,
∴∠AEF=∠BDF=90°,
∵∠AFE=∠BFD,
∴∠EAF=∠FBD,∵∠BDF=∠ADC=90°,
∴△BDF≌△ADC,
∴DF=DC=3,
在Rt△BDF中,BD=$\sqrt{B{F}^{2}-D{F}^{2}}$=4,
∴AB=$\sqrt{2}$BD=4$\sqrt{2}$.
(2)①證明:如圖2中,設(shè)AB交GF于O.
∵∠GAO=∠OFB=90°,∠AOG=∠BOF,
∴△AOG≌△FOB,
∴$\frac{OG}{OB}$=$\frac{OA}{OF}$,
∴$\frac{OG}{OA}$=$\frac{OB}{OF}$,∵∠BOG=∠AOF,
∴△BOG∽△FOA,
∴∠BGO=∠OAF=45°,
∴∠BGF=45°.![]()
②證明:如圖2中,在AB上截取AM=AG,則∠MGA=∠BGF=45°,
∴∠BCM=∠FCA,
∵BC=$\sqrt{2}$FG,GM=$\sqrt{2}$AC,
∴$\frac{BG}{GF}$=$\frac{GM}{GA}$=$\sqrt{2}$,
∴△BGM∽△FGA,
∴$\frac{BM}{AF}$=$\frac{BG}{GF}$=$\sqrt{2}$,
∴BM=$\sqrt{2}$AF,
∴AB=AM+BM=AG+$\sqrt{2}$AF.
點評 本題考查等腰直角三角形的性質(zhì)和判定、全等三角形的判定和性質(zhì).相似三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題,屬于中考壓軸題.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{1}{3}$>-$\frac{1}{4}$ | B. | -|-1|>-|+1| | C. | $\frac{1}{3}$<$\frac{1}{4}$ | D. | |-$\frac{1}{3}$|>|-$\frac{1}{4}$| |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com