欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.近似數(shù)4.30萬是精確到百位.若$\frac{a}{2}$與$\frac{2a-9}{3}$互為相反數(shù),則a的值是$\frac{18}{7}$.

分析 根據(jù)近似數(shù)的精確度得到近似數(shù)2.40萬精確到0.01萬位,也就是百位.利用相反數(shù)性質(zhì)求出a的值即可.

解答 解:近似數(shù)4.30萬精確到百位.
故答案為:百.

由題意得:$\frac{a}{2}$+$\frac{2a-9}{3}$=0,
去分母得:3a+4a-18=0,
解得:a=$\frac{18}{7}$,
故答案為:$\frac{18}{7}$

點評 此題考查了解一元一次方程,相反數(shù),以及近似數(shù)與有效數(shù)字,熟練掌握運算法則是解本題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

2.不等式組$\left\{\begin{array}{l}{x<1}\\{x>m-1}\end{array}\right.$,若不等式組無解,則m的值可以為3(寫出一個即可)若不等式組恰有兩個整數(shù)解,則m的取值范圍是-1≤m<0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

3.如圖,在平面直角坐標系中,將坐標為(0,0),(2,4),(2,0),(4,4)的點用線段依次連接起來形成一個圖案:
(1)若這四個點的縱坐標若保持不變,橫坐標變?yōu)樵瓉淼?\frac{1}{2}$,所得圖案與原來的圖案相比有什么變化?
(2)橫坐標不變,縱坐標分別減3,所得圖案與原來圖案相比有什么變化?
(3)橫坐標、縱坐標分別變?yōu)樵瓉淼?倍,所得圖形與原圖形相比有什么變化?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

20.如圖是某校初中三個年級學生人數(shù)分布扇形統(tǒng)計圖,若七年級學生160人,則九年級學生100人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

7.檢修小組從A地出發(fā),在東西走向的路上檢修線路,如果規(guī)定向東為正,向西為負,一天中每次行駛記錄如下(單位:千米);-5,+8,-7,+11,+4,-3,-2.
(1)收工時在A地的哪個方向?距A地多遠?
(2)距A地最遠的是哪一次?
(3)若每千米耗油0.8升,從出發(fā)到收工共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

17.先化簡,再求值:3x2y-[xy2-2(2xy2-3x2y)+x2y]+4xy2,其中(x+2)2+|y-1|=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

4.把表示下列各數(shù)的點畫在數(shù)軸上,再按從小到大的順序,用“<”號把這些數(shù)連接起來:2$\frac{1}{2}$,-1.5,0,-(+3),-4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

1.觀察下列各等式的變化過程:
a1=$\frac{1}{1×3}$=$\frac{1}{2}$×$\frac{3-1}{1×3}$=$\frac{1}{2}$(1-$\frac{1}{3}$)
a2=$\frac{1}{3×5}$=$\frac{1}{2}$×$\frac{5-3}{3×5}$=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$)
a3=$\frac{1}{5×7}$═$\frac{1}{2}$×$\frac{7-5}{5×7}$=$\frac{1}{2}$($\frac{1}{5}$-$\frac{1}{7}$)
a4=$\frac{1}{7×9}$═$\frac{1}{2}$×$\frac{9-7}{7×9}$=$\frac{1}{2}$($\frac{1}{7}$-$\frac{1}{9}$)

(1)按照以規(guī)律,寫出第5個等式:
a5=$\frac{1}{9×11}$=$\frac{1}{2}$×$\frac{11-9}{9×11}$=$\frac{1}{2}$($\frac{1}{9}$-$\frac{1}{11}$)
(2)仿照以上各式,用含n(n為正整數(shù))的代數(shù)式表示第個等式:
an=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$$\frac{(2n+1)-(2n-1)}{(2n-1)×(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
(3)計算a1+a2+a3+…+an的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.先化簡,再求值:(a2b-2ab3)÷b-(a+b)(a-b),其中a=$\frac{1}{2}$,b=2.

查看答案和解析>>

同步練習冊答案