分析 (1)連結(jié)AC,由條件可以得出△ABC為等邊三角形,再由等邊三角形的性質(zhì)就可以得出△CBD≌△ACE就可以得出∠BCD=∠CAE,就可以得出結(jié)論;
(2)作AF⊥AB于A,使AF=BD,連結(jié)DF,CF,就可以得出△FAD≌△DBC,就有DF=DC,∠ADF=∠BCD,就可以得出△DCF為等腰直角三角形,就有∠DCF=∠APD=45°,就有CF∥AE,由∠FAD=∠B=90°,就可以得出AF∥BC,就可以得出四邊形AFCE是平行四邊形,就有AF=CE.
解答
(1)解:連結(jié)AC,
∵AD=BE,BD=CE,
∴AD+BD=BE+CE,
∴AB=BC.
∵∠B=60°,
∴△ABC為等邊三角形.
∴∠B=∠ACB=60°,BC=AC.
在△CBD和△ACE中
$\left\{\begin{array}{l}{BC=AC}\\{∠B=∠ACB}\\{BD=CE}\end{array}\right.$,
∴△CBD≌△ACE(SAS),
∴∠BCD=∠CAE.
∵∠APD=∠CAE+∠ACD,
∴∠APD=∠BCD+∠ACD=60°.
故答案為60°;
(2)證明:作AF⊥AB于A,使AF=BD,連結(jié)DF,CF,
∴∠FAD=90°.
∵∠ABC=90°,
∴∠FAD=∠DBC=90°.
在△FAD和△DBC中,![]()
$\left\{\begin{array}{l}{AF=BD}\\{∠FAD=∠DBC}\\{AD=BC}\end{array}\right.$,
∴△FAD≌△DBC(SAS),
∴DF=DC,∠ADF=∠BCD.
∵∠BDC+∠BCD=90°,
∴∠ADF+∠BDC=90°,
∴∠FDC=90°,
∴∠FCD=45°.
∵∠APD=45°,
∴∠FCD=∠APD,
∴CF∥AE.
∵∠FAD=90°,∠ABC=90,
∴∠FAD=∠ABC,
∴AF∥BC.
∴四邊形AECF是平行四邊形,
∴AF=CE,
∴CE=BD.
點評 此題考查了全等三角形的判定與性質(zhì)的運用,等邊三角形的判定及性質(zhì)的運用,平行四邊形的判定及性質(zhì)的運用,等腰直角三角形的判定及性質(zhì)的運用.解答時證明三角形全等是關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com